
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D3.10 – Automatic Parallelization of Data

Streams and Intelligent Pipelining - II

Revision Number 3.0

Task Reference T3.4

Lead Beneficiary LXS

Responsible Ricardo Jiménez-Peris

Partners LXS, GLA, UNP

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2021-07-31

Delivered Date 2021-07-27

Internal Reviewers NUIG, UPRC

Quality Assurance INNOV

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no 856632

Ref. Ares(2021)4797333 - 27/07/2021

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 44

Contributing Partners
Partner Acronym Role1 Author(s)2

LXS Lead Beneficiary Ricardo Jiménez-Peris

LXS Contributor Boyan Kolev,

Pavlos Kranas,

Spencer Pablos,

Patricio Martinez,

José María Zaragoza,

Jesús Manuel Gallego

GLA Contributor Richard Mccreadie

UNP Contributor Bruno Almeida

Tiago Teixeira

NUIG Internal Reviewer Martin Serrano

UPRC Internal Reviewer Dimitris Kotios

INNOV Quality Assurance Dimitris Drakoulis

Revision History
Version Date Partner(s) Description

0.1 2021-07-09 LXS ToC Version and updated initial input of D3.10

0.2 2021-07-09 All Section 5 added

0.3 2021-07-22 LXS Update Executive summary, intro and
conclusions

1.0 2021-07-22 LXS Submitted for internal review

1.1 2021-07-26 UPRC Internal review

1.2 2021-07-26 NUIG Internal review

2.0 2021-07-26 LXS, GLA Submitted for QA

3.0 2021-07-27 LXS Finalized the document

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 44

Executive Summary
The goal of task T3.4 “Automated Parallelization of Data Streams and Intelligent Data Pipelining” is to firstly
provide the INFINITECH approach for intelligent data pipelines and secondly, to allow for the automation of
the deployment of parallelized data streams. Modern applications currently being used by data-driven
organizations, such as those belonging to the finance and insurance sector, require to process data streams
along with data persistently stored in a data base. A key requirement for such organizations is that the
processing must take place in real-time providing real-time results, alerts or notifications in order to
instantly detect fraud financial transactions the moment they are being occurred, detect possible
indications for money laundering or provide real-time risk assessment among other needs. Towards this
direction, streaming processing frameworks have been used during the last decade in order to process
streaming data coming from various sources, in combination with data persistently stored in a database
that can be considered as data at-rest. However, processing data at-rest introduces an inherit significant
latency, as data access involves expensive I/O operations, which are not suitable for streaming processing.
Due to this, various architectural designs have been proposed and are utilized in the modern landscape that
deals with such problems. They tend to formulate data pipelines, moving data from different sources to
other data management systems, in order to allow efficient processing in real-time. However, they are far
from being considered as intelligent, with each of the proposed approaches comes with their own barriers
and drawbacks.

A second key requirement for data-driven organizations in finance and insurance sector is to be able to
cope with diverse workloads and continuously provide results in real-time even when there is a burst of
incoming data load from a stream. This might occur in case of having a stream consuming data feeds from
social media in order to perform a sentiment analysis and an important event or incident takes place, which
will make the social community response by posting an increased number of tweets or articles. Another
example is the unexpected currency devaluation that will most likely trigger numerous financial
transactions caused by people and organizations swapping their portfolio currencies. The problem with the
current landscape is that modern streaming processing frameworks allow for static deployments of data
streams that consist of several operators, in order to serve an expected input workload. In case of such
scenarios, an unexpected burst of the incoming workload might saturate the resources devoted for the
initial deployment which cannot provide the results in real-time, or even worse, might lead to a crash.

In order to cope with the abovementioned requirements and overcome the current barriers of the modern
landscape, we envision the INFINITECH approach for Intelligent Data Pipelines and the parallelized data
stream processing using Apache Flink as the baseline technology for the INFINITECH streaming processing
framework along with Kubernetes. In our solution we provide a holistic approach for data pipelines that
makes use of the key innovations and technologies provided by INFINITECH and implemented in the rest of
the tasks of the project related with data management activities. Our solution solves all problems related
with different types of storage and the usage of different types of databases for persistent data storage,
allowing efficient query processing, handling aggregates and dealing with snapshots of data. Moreover, we
have designed our solution for parallelized data stream processing, allowing the deployed operators to save
and restore their state and the online reconfiguration of the Flink clusters, which enables elastic scalability
by programmatically scaling the clusters.

This document reports on the work that has been done towards those two main objectives at the current
phase of the project. An initial state-of-the-art analysis of the current status of the data pipelines and data
stream parallelization has been provided, along with the discovered barriers, problems and solutions used
so far. Then, we provide the current landscape of data pipelining in modern enterprises today, analyzing
the different architectures used to cope with the inherit challenge of combining streaming data with data
at-rest, along with each solution’s benefits and drawbacks .We then defend on how the INFINITECH
approach can be used to solve those issues in a holistic manner, utilizing the development of the other
tasks and the INFINISTORE as its basic pillars. At this second phase, we went one step beyond, making use
of the change data capture paradigm for implementing the data pipelines. We provide a demonstrator on
how we can move data from external operational datastore to INFINITECH in a transparent way. Then, we

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 44

describe the initial design of our solution which allows the dynamic redeployment of the parallelized data
streams to enable the elastic scalability of the deployed operators. In the final version of the document, we
provide implementation details regarding these parallelized data streams and extend the data pipelines to
enable other targets to consume data from INFINISTORE. This will be of significant value for the Semantic
Interoperability Engine of INFINITECH.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 44

Table of Contents
1 Introduction ... 8

1.1. Objective of the Deliverable .. 9

1.2. Insights from other Tasks and Deliverables... 9

1.3. Updates from the previous version (D3.9) .. 10

1.4. Structure .. 10

2 State-of-the-Art Analysis on Data Stream Parallelization ... 11

2.1 Introduction ... 11

2.2 Query Parallelism & Data Partitioning ... 12

2.3 Data Partitioning .. 12

2.4 Genuine Stream Processing vs. Batch Processing ... 13

2.5 Fault Tolerance and Message Processing Coherence Guarantees .. 13

2.6 Distributed Data Streaming Engine Components .. 14

2.7 Distributed Data Streaming Engine Categories ... 15

2.8 Window Programming Models .. 15

2.9 Data Source Interaction Models .. 16

3 The Landscape of Data Pipelining at Enterprises Today .. 17

4 Intelligent Data Pipeline: The INFINITECH Approach .. 21

5 Intelligent Data Pipeline in practice .. 28

5.1 Use of Debezium for Change Data Capture ... 28

5.2 From an operational datastore to INFINISTORE .. 29

5.3 Use of Debezium for Change Data Capture with Avro Serialization ... 34

5.4 Next Steps .. 37

6 Parallized Data Stream Processing using Apache Flink and Kubernetes ... 39

6.1 Motivation ... 39

6.2 Problem Definition .. 39

6.3 System Design .. 40

6.3.1 Operator State Saving and Loading ... 40

6.3.2 Programmatic Scaling of Flink Clusters ... 41

6.3.3 Pipeline Configuration Transition between Flink Clusters .. 42

7 Conclusions and next steps ... 43

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 44

List of Figures
Figure 1: Stream Processing Engines Evolution ... 11
Figure 2: A typical lambda architecture .. 21
Figure 3: INFINITECH Data Pipeline moving data from MySQL to INFINISTORE ... 30
Figure 4: INFINITECH Data Pipeline moving data from MySQL to INFINISTORE using Avro as data serializer 34
Figure 5: Pipeline Transition Diagram ... 41
Figure 6: Flink Operator and Flink Cluster Creation .. 41

file:///E:/idezol/Dropbox/Projects/INFINITECH/WP3/D3.10/INFINITECH-D3.10_Automatic_Parallelization_of_Data_Streams_and_Intelligent_Pipelining_-_II_v0.4.docx%23_Toc77863412

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 44

Abbreviations/Acronyms
ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

CDC Change Data Capture

CEP Complex Event Processing

CPU Central Processing Unit

DoA Description of Action

DNS Domain Name System

ELT Extract, Load, Transform

ETL Extract, Transform, Load

FP7 7th Framework Program

HDFS Hadoop Distributed FileSystem

HTAP Hybrid Transactional and Analytical Processing

I/O Input / Output

INFINISTORE The INFINITECH data management layer based on the LeanXcale database

IoT Internet of Things

JSON Javascript Object Notation

MoM Monitor of Monitors

OLAP Online Analytical Processing

SQL Structured Query Language

WP Work Package

XML Extensible Markup Language

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 44

1 Introduction
Data-driven organizations nowadays are increasingly requiring the combination of streaming data with
persistently stored data, usually called data in-flight and data at-rest. Streaming processing frameworks
that have been adopted and widely used during the last decade are being enhanced with additional
functionalities for solving the inherit barriers that database management systems introduce to an
integrated solution. The most important obstacles faced are the latency of an analytical query processing
operation over a persistent data store and that datastores are not designed to support data ingestion in
very high rates in order to serve an increased data load coming from a stream. Due to this, they tend to use
a variety of different data management systems, from operational datastores, to data warehouses and data
lakes. Operational datastores allow to persistently write data, but are not appropriate to perform analytical
query processing over bigdata. For this purpose, data is being periodically moved to data warehouses that
are designed to only allow read operations, using sophisticated indices and data structures that can boost
the performance of such operations. Data lakes can also be used as a cost effective solution to store
historical data that does not require frequent processing. Operational datastore on the other hand can be
further divided to different categories: traditional SQL datastores that ensures consistency in terms of
database transactions, which are critical for applications in the insurance and finance sector. However, they
are not designed to scale out, and they are inefficient in performing analytics on the same time. For this
reason, other types of operational datastores have been adapted during the last decade, commonly
referred as NoSQL datastores (or their evolutions which are widely known as NewSQL), which sacrifices
transactional semantics for the sake of scalability. Usually, they can scale out more efficiently and can serve
ingestions in very high rates. However, they lack rich query processing capabilities. As a result, modern
enterprises use a variety of different datastores, stream data managers and tools, such as Kafka and
machine learning infrastructure. This makes the data pipelines more complex and problematic, as they
need to move data across the different databases, in order to take advantage of each one’s benefits. For
that, they rely on expensive ETLs (Extract, Transform, Load) and they perform periodic batch processing,
which is not suitable when there is the need for real-time data analytics. Periodic batch processing makes
the data used in a processing framework obsolete, as ETLs take place periodically, once every day or during
weekends.

In order to overcome these problems, different architecture designs have been proposed and adapted in
modern enterprises. For instance, lambda architectures have been widely adopted to solve the problems of
complexity mixing different databases and the need for real-time processing. But they are very complex,
consisting of different layers with different codebase, while their maintenance is hard to keep. Other
architectures rely on moving data from operational to analytical datastores and vice-versa, using
architectural designs such as current-historical data splitting, data warehouse or operational data
offloading and database sharding. All of these come with the drawback that query processing takes place
over a snapshot of the dataset, and the results are obsolete. Other approaches aim at improving the
latency of the execution of an analytical query, which involves aggregations. This is crucial as the response
time must be very low in order to be used in combination with streaming operators. Detail-aggregate view
splitting, in-memory application aggregations and federated aggregations are techniques widely used to
solve these issues, with the drawback of sacrificing the consistency and accuracy of the results. We provide
details on these designs in section 3 of this report.

To solve these issues, we propose the INFINITECH approach for Intelligent Data pipelines, which provides a
holistic solution for data pipelines, solving major problems with different types of storage, handling of
aggregates and dealing with snapshot databases. Our proposed analytical pipeline will address all of the
above identified architectural patterns for data pipelining, combining data streaming and data at rest,
taking advantage of the technologies and innovations developed in INFINITECH that break through the
current barriers of modern applications in finance and insurance sectors which have been reported so far in
the corresponding deliverables such as D3.1, D3.4, D3.6, D5.1 and D5.4 that report the work that has been
carried out so far in the rest of the tasks related with the data management layer of IFINITECH. We will
build our solution taking these prototypes as the basic pillars.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 44

Another key requirement for modern data-driven organizations using streaming processing frameworks is
the ability to cope with diverse incoming workloads. So far, current solutions allow only static deployments
of data stream operators. This is problematic in the sense that in cases of unexpected peaks of incoming
data coming from a stream, the static deployment cannot scale out to cope with that need.

In order to help solving the abovementioned issues and according to the various INFINITECH pilots, we
propose a solution based on Apache Flink as the streaming processing framework of INFINITECH, integrated
with the INFINISTORE as the data management layer and in combination with Kubernetes as the container-
orchestration framework. By using INFINISTORE, we can cope with the majority of technological challenges
for data pipelines that require complex architectures that introduce additional barriers, as explained in
section 4 of this report. The use of Flink allows us to also extend their operators to store and restore their
state using checkpoints. By doing so, we are now capable of redeploying a Flink cluster, increasing the
number of instances of the operators and restoring their relevant state. This allows programmatically
scaling the Flink clusters and providing dynamic redeployments in order to cope with these diverse
workloads.

1.1. Objective of the Deliverable
The objective of this deliverable is to report the work that has been done in the context of the task T3.4
“Automated Parallelization of Data Streams and Intelligent Data Pipelining” at this phase of the project.
This task lasts until M30 and therefore, two additional versions will be released, extending and modifying
the content of this document. During this phase, the identification of the problem that needs to be solved
took place, by performing a thoughtful state-of-the-art analysis on problems and solutions of data pipelines
and data stream parallelization, along with a detailed analysis of their current landscape in modern
enterprises of today. We identify which different technologies are mostly used in order to combine
processing of streaming data with data at-rest in a data pipeline, and the dominant architectural designs
used so far, in order to identify the current drawbacks. We then propose the INFINITECH approach for data
pipelines, that will solve those problems in an holistic manner. Moreover, we designed our solution that
allows for dynamic redeployments of streaming operators. This will allow for a dynamic scaling of those
operators, which is a current challenge.

In the next iterations of this deliverable, a more detailed description of our implementation will take place,
along with the experimentation with use case scenarios coming from the pilots of INFINITECH. However,
our solution is case agnostic, and has been designed to fit any other user story.

1.2. Insights from other Tasks and Deliverables
The work that is reported in this deliverable is based on the overview of baseline technologies defined in
WP2. This task is based on the technologies and innovations implemented under the scope of the tasks of
the project that are related with the data management layer and make use of those at the basic pillars. As a
result, is very closely related with T3.1 “Framework for Seamless Data Management and HTAP”, which
provides the fundamentals that allows the hybrid transactional and analytical processing, allowing the for
query processing over live data added in the operational datastore, removing the need to migrate data to a
data warehouse. Moreover, T3.1 allows for the direct data ingestion in very high rates, which removes this
barrier from our solution. T3.2 “Polyglot Persistence over BigData, IoT and Open Data Sources” provides the
polyglot extensions in the level of INFINISTORE query engine that allows for a unified manner to query data
that are stored in a different data sources. T5.3 “Declarative Real-Time Data Analytics” implements the
online aggregates that will be massively used in our solution, removing the inherit barriers of data
consistency that various architectural designs suffers when trying to pre-calculate the results of the
analytical operations in order to boost the performance of such operations. Finally, T3.3 “Integrated

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 44

Querying of Streaming Data and Data at Rest” provides the Apache Flink as the streaming query processing
framework of INFINITECH, integrated with the data management layer (the INFINISTORE) to allow the
combination of streaming processing with data at-rest in INFINISTORE. With this integration, we are now
capable of taking advantage of all these aforementioned technologies into our INFINITECH approach for
Intelligent Data Pipelines. Last but not least, the INFINITECH way for deployment, using tailored sandboxes
that rely on the Kubernetes, as implemented under the scope of WP6 “Tailored Sandboxes and Testbeds
for Experimentation and Validation” and the provision of the reference testbed, in combination with the
use of Apache Flink as the baseline technology for streaming processing, allows for the parallelization of the
data streams which is the second important objective of the task.

1.3. Updates from the previous version (D3.9)
In this version of the report, we have added section 5 which provides a demonstrator of how an INFINITECH
Data Pipeline can be configured, deployed and executed. We firstly introduce the change data capture
paradigm which uncovers the basic principle behind our implementation, along with the Debezium
framework that will be used as the background technology. Then, we provide a demonstrator for a data
pipeline between an operational datastore that lies outside an INFINITECH deployed sandbox and the
INFINISTORE. In the next subsections, we give more details with a hands-on about configuring this data
pipeline and deploying it. Then, we simulate the scenario where data is being ingested in the operational
datastore and transparently moved to the INFINISTORE, whose innovation features can be further exploited
by data analysts or application developers, removing the need for the complex hybrid architectures that
has been explained in detail in section 4. Finally, we give an overview of the next steps and planning for the
final phase of this task.

1.4. Structure
This document is structured as follows: Section 1 introduces the document, putting the work reported in
this deliverable under the context of the project, highlighting its relation with the tasks related with the
data management activities of the project. Section 2 provides an extensive state-of-the-art analysis on data
stream parallelization, describing the problems and the most adapted solutions. Section 3 describes the
current landscape of modern applications that make use of the data pipelines while section 4 introduces
our vision for the INFINITECH approach for Intelligent Data Pipelines, after providing an analytical survey of
modern architectural designs along with their drawbacks and inherit issues, describing how our approach
can provide a holistic way to solve all those issues. Section 6 provides a demonstrator regarding the
implementation of an INFINITECH data pipeline that moves transparently data from an operational data
store to the INFINISTOE. Section 6 deals with the problem of dynamic reconfiguration of streaming
operators that will allow dynamic scalability and also describes the design of our solution. Finally, section 7
concludes the document and presents the next steps towards the delivery of our prototype.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 44

2 State-of-the-Art Analysis on Data Stream
Parallelization

2.1 Introduction

There is an increasing demand in data-driven organizations to process data streams as opposed to only
stored data. A data stream is a sequence of tuples with some pre-defined schema. The main difference with
a database is that a database query processes a snapshot of data at a particular point in time and produces
the answer, while a streaming query is continuous and produces results continuously. Basically, a stream
comes from a data source and contains tuples. A data streaming query processes this continuous sequence
of tuples producing a continuous stream of results. Data streaming has many applications in the financial
and insurance world such as fraud detection, IoT, stock trading, etc. For this reason, they are becoming
more and more important in data-driven organizations.

Figure 1: Stream Processing Engines Evolution

Data streaming engines started as centralized systems such as NiagaraCQ (J. Chen, 2000) and TelegraphCQ
(S. Chandrasekaran, 2003), or Aurora (D. Carney, 2002). The main issue with centralized engines is that they
are limited to the capacity of a single node and they cannot process large stream volumes. For this reason,
distributed stream processing systems started to be built introducing different kinds of parallelism in the
query processing. In the next section we elaborate on the different ways to introduce parallelism in query
processing to enable distributed stream processing.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 44

2.2 Query Parallelism & Data Partitioning
There are two broad approaches of introducing parallelism in query processing (Valduriez, 2020):

1. Inter-query parallelism. This parallelism basically enables to run different queries in parallel.
Although useful if there are many queries, a not very common case in data streaming, it doesn’t
help to process large volume streams, that is, streams with a high rate of tuples.

2. Intra-query parallelism. This parallelism actually enables to accelerate even a single query. It
basically consists in parallelism the processing within the query. There are two mechanisms that
can be used:

a. Inter-operator parallelism. This parallelism lies in having multiple operators within the
query plan to run in parallel and process tuples at the same time. It can be helpful if there
are many operators, that again, it is not the common case in data streaming systems.

b. Intra-operator parallelism. This type of parallelism parallelizes the processing of a single
operator within the query plan, enabling multiple threads/processes to process different
subsets of the incoming data streaming to the operator.

Centralized approaches already provide inter-query parallelism. One can run multiple queries on the same
stream engine, and one could scale a little bit by using multiple centralized engines, one for each different
query. Intra-query parallelism came with distributed data streaming frameworks. Some of the pioneering
ones are Borealis (Daniel J. Abadi, 2005) and StreamCloud (V. Gulisano, 2010). Distributed data streaming
systems introduced intra-query parallelism. Borealis introduced inter-query parallelism via inter-operator
parallelism. While StreamCloud introduced intra-operator parallelism, thus enabling scale out to large
volume data streams. This intra-operator parallelism pioneered by StreamCloud has become the standard
in modern data streaming systems such as Flink (P. Carbone, 2015) (originally called stratosphere (A.
Alexandrov, 2014)) and Spark streaming (Matei Zaharia, 2013). StreamCloud was the main outcome of the
Stream FP7 project and has become one of the main references in distributed data streaming. It was also
the first data streaming system to implement elasticity (V. Gulisano R. J.-M., 2012). This evolution of data
streaming engines is depicted in Error! Reference source not found..

2.3 Data Partitioning
Another aspect related to the query parallelism and needed to make such systems work is data
partitioning. Once there is intra-operator parallelism, the question is how to partition the data across the
different instances of a given operator. There are two big approaches for partitioning the data, vertical and
horizontal. Vertical partitioning lies in splitting the data as different subsets of columns. However, data
streaming queries are not very amenable for vertical partitioning in general. Horizontal partitioning splits
data as disjoint sets of full rows/events. Horizontal partitioning can be further classified into range, hash
partitioning, and round-robin. Range partitioning relies on each partition being a range of the distribution
key. With hash partitioning the distribution key is hashed and the modulus is obtained dividing by a number
of buckets. The result is a bucket number that is used as the distribution unit. In round-robin events are
sent in a round-robin fashion to the parallel operators.

However, it should be noted that data partitioning depends on which category of operator is being applied.
There are stateless and stateful operators. Stateless operators perform their function independently of any
previous input. An example of stateless operators is a filter. Stateful operators on the other hand perform a
computation over several rows/events. An example would be an aggregation.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 44

Range partitioning has the disadvantage that it requires tuning to guarantee a good load balancing across
parallel instances of the operator. Hashing on the other hand provides good load balancing by default,
although it has an extra processing cost to compute the hash over the distribution key. Round-robin
partitioning only works for stateless operators. If the partitioning is not done right, the parallelism does not
improve the performance, simply wasting hardware.

2.4 Genuine Stream Processing vs. Batch Processing
Another dimension in the comparison of streaming engines is whether they are genuine stream processing
engines or they process batches. Genuine stream processing engines, such as StreamCloud or Flink, process
events as they are produced yielding real-time processing. However, batch-based engines such as Spark
streaming have some delay in the processing of events (e.g a few seconds), since they aim to buffer a set of
events before processing begins. Processing in batches can be advantageous for more efficient processing.
However, it introduces a delay of seconds that can be detrimental for event-oriented applications.

2.5 Fault Tolerance and Message Processing Coherence
Guarantees

Another aspect of distributed stream engines is whether they provide a mechanism to attain high
availability in the advent of failures or not, and in affirmative case what are the message processing
coherence guarantees.

There are different fault tolerance techniques that can be used in data streaming to provide high
availability of different degrees:

Active Replication:

It lies on having each operator instance running on two or more nodes and then all instances will
receive the same data and produce the same output. This requires sending data from a replicated
operator to another replicated operator and guarantee 1-copy semantics, that is, guaranteeing that
the replicated data streaming engine has the same functional behaviour as the non-replicated one.

Checkpointing:

Under a checkpointing approach, the state of stream processing pipeline components are
periodically saved to a persistant storage medium. During operation, the stream processing
platform tracks what parts of the stream have finished processing. If a failure occurs, then the
pipeline (either as a whole or as only a subset of failed components) are rolled-back to the last
checkpoint and processing continues from the start of that checkpoint.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 44

2.6 Distributed Data Streaming Engine Components
The architecture of distributed data streaming engines shares some similarities from a functional point of
view. They have, in general, the following layers:

1. Data ingestion layer.

This layer is specialized to capture data from different data sources. These data sources can be
monitoring probes or logs, information systems, IoT devices, etc. Basically, the different system
specializes in being able to capture this data with minimal effort providing ways to automatically
extract the data from the sources or supporting a data format that the data sources use such as
text, JSON, binary, etc. They can also use a generic mechanism to connect to the data sources such
as sockets or REST interfaces.

2. Data processing layer.

This layer is in charge of actually processing the continuous queries. One of the most common ways
is that the data processing layer is represented as a set of containers where one can deploy one or
more data streaming operators. Data streaming operators are typically algebraic operators able to
do basic functions such as filtering with a predicate, doing a vertical projection (i.e., selecting a
subset of the columns), doing an aggregation (e.g., the sum of some column), or even joining two
data streams (e.g., join together tuples with the same key).

3. Storage layer.

Although data streaming engines are typically managing in memory data, many of them provide
interfaces to storage of different kinds. It can be from file systems such as HDFS, to key-value data
stores such as HBase or Cassandra or even full-fledged relational SQL databases such as PosgreSQL.

4. Output layer

The output layer provides the interface to send the output of the continuous streaming queries
running on the streaming engine. The output can be dashboards, visualization tools, a file, or even
a socket to connect to an arbitrary application.

5. Management layer

This is the layer handling the deployment and decommissioning of queries, fault-tolerance, etc. It
orchestrates the different nodes used for the distributed data streaming engine to process a set of
continuous data streaming queries and connect them to the data sources and produce the output
data to the data sinks.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 44

2.7 Distributed Data Streaming Engine Categories
Distributed data streaming engines have undergone specialization and the following different categories
can be identified:

1. General purpose data streaming frameworks.

They aim at providing a framework where continuous data streaming queries can be deployed
and processed at different scales. They allow to express queries either as an acyclic directed
graph of algebraic operators or in a query language. Early data streaming engines, such as
Borealis and StreamCloud, basically they allow to process queries, while modern frameworks
such as Flink and Spark Streaming they provide other functionalities needed by enterprises. For
instance, Spark Streaming is integrated with Spark for doing machine learning.

2. Complex Event Processing (CEP).

They provide support to write business rules to deal with the identification of particular events
from continuous streams of information, such as a threat situation in security, when to buy or
sell stocks in stock trading, etc. These rules enable to detect event patterns, abstract events or
event-driven processes, model event hierarchies, detecting event relationships (causality,
membership, timing), and do similar processing as with data streaming systems such as
filtering, aggregation, and transformation. Examples of CEP systems are Esper (Espertech, s.f.)
and StreamBase (Tibco, s.f.).

3. Online machine learning systems.

These systems apply machine learning over data streams to provide a continuous learning over
the data stream. This is interesting when one cannot train over a full dataset or new patterns
can appear over time. One sample system in this category is SAMOA (Scalable Advanced
Massive Online Analysis) (Gianmarco De Francisci Morales, 2015). SAMOA actually can work
over different data streaming engines such as Storm (http://storm.apache.org/, s.f.), S4
(http://incubator.apache.org/s4, s.f.), and Samza (http://samza.incubator.apache.org, s.f.).

4. Streaming graph analytics.

They basically keep a graph in memory updated by means of streaming actions and provide
real-time processing over the graph such as recommendations, etc. The examples on this area
mainly come from Twitter such as GraphJet (A. Sharma, 2016).

2.8 Window Programming Models
Data streaming engines work on the idea of an infinite stream of events. It is equivalent to a regular
database table with infinite rows. The processing is made in chunks. Actually, a sliding window over this
stream of events. Windows can be defined based on time or number of events. The nature of the window
sliding can be different and basically, there are three main window programming models:

1. Fixed or tumbling windows.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 44

These windows split time in consecutive intervals. Events are considered in the interval their timestamp
belongs.

2. Sliding windows.

Sliding windows are more generic. They support overlapping windows. They are defined by two
parameters: length of the window and slide. The length indicates how long is the interval. The slide
how much is shifted the window during each step. If the length is 10 and the shift 5, there will be
windows from 1 to 10, 5 to 15, 11 to 20, etc. If the shift is equal to the length, then they behave like
fixed windows.

3. Session windows.

Sessions are defined by certain thresholds, typically certain time of inactivity. They are used for user-
oriented input in which users are active and then after they are inactive for some time the session is
considered to be finished. When activity restarts it starts in a new session.

2.9 Data Source Interaction Models
There are basically two modes of interaction with data sources: push and pull. In the push mode, the data
source sends data through an API as soon as it has new data. In the pull mode, there is an agent at the data
source side that periodically checks whether there is data available and sends it when new data is found.
The push mode gives the best response times because data is sent as soon as it is available. Also the pull
mode has the shortcoming that the frequency of pulling has to be higher than the frequency of data
generation, since otherwise it leads to data loss.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 44

3 The Landscape of Data Pipelining at Enterprises
Today

In the current data management landscape, there are clearly two big families of data management,
streaming data and data at rest. The latter is the most extended, however, the former is gaining traction to
solve problems not amenable for the latter. There are some key differences between data streaming and
persistent data stores. The first difference is the fact that data streaming queries are continuous and work
over sliding windows, while persistent databases perform point-in-time queries executed just once over
stored data. The second difference is that data streaming engines rely on in memory state that allow them
to process efficiently large volumes of streaming data while persistent databases have to access persisted
data that is far more costly and is what makes them slower and not being able to process the same volume
of streaming data per node.

However, each family has a number of possibilities, especially, the one related to persistent databases. Let
us first have a look at this landscape to better understand how INFINITECH can help in the problem of data
pipelining.

Persistent databases can be classified first into:

1. Operational databases.

These databases store data in persistent media. They allow to update the data while the data is
being read. The consistency guarantees that are given with concurrent reads and writes vary.
Operational databases, because they can be used for mission critical applications, might provide
capabilities for attaining high availability that tolerates node failures and in some cases they can
even tolerate data centre disasters leading to the whole loss or lack of availability of a whole data
centre. The source of these disasters can be from a natural disaster like a flood, a fire, the loss of
electric power, the loss of Internet connectivity, a Distributed Denial of Service attack resulting in
the loss of CPU power and/or network bandwidth, or the saturation of some critical resource like
DNS, etc.

2. Data warehouses.

Data warehouses are informational databases. They are designed only to query data after ingesting
it. They do not allow modifications, simply loading the data, and after the loading is complete,
querying the data. They specialize on speeding up the queries by means of OLAP (On Line Analytical
Processing) capabilities. OLAP capabilities are attained by introducing intra-query parallelism
typically in the form of intra-operator parallelism. They typically use a customised storage model to
accelerate the analytical queries by using a columnar model or they use an in-memory architecture.

3. Data lakes.

They are used as scalable cheap storage where to keep historical data at affordable prices. The
motivation of keeping this historical data might be legal requirements of data retention but more
recently the motivation is from the business side to have enough data to be able to train machine
learning models in a more effective way by reaching a critical mass of data in terms of time, but
also in terms of detail. Some organizations use data lakes as cheap data warehouses when the
queries are not especially demanding in terms of efficiency. A data lake might require more than an
order of magnitude higher resources for an analytical query with a target response time than a data
warehouse, while the price follows an inverse relationship.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 44

Operational databases can themselves be classified in three broad categories:

1. Traditional SQL databases.

Traditional SQL operational databases are characterized by two facts. The first one is that they
provide SQL as query language. The second one is that they provide the so-called ACID guarantees
over the data. We discuss later these ACID properties in detail. The main limitations of traditional
SQL databases is their scalability, typically they either don’t scale out or scale out logarithmically
that means that their cost grows exponentially with the scale of the workload to be processed.
They typically provide mechanisms for high availability that guarantee the ACID properties what is
technically known as 1-copy consistency guarantees. The second limitation that they have is that
they ingest data very inefficiently so they are not able to insert or update data at high rates. Their
lack of linear scalability also results in exponentially growth of cost.

2. No-SQL databases

No-SQL databases is a category with a number of different kinds of databases that are
characterized by addressing requirements not well-addressed by traditional SQL databases. There
are four main kinds of No-SQL databases as we will see later. Basically, they address the lack of
flexibility of the relational schema that is very rigid and forces to know in advance all the fields of
each row in the database and they are very disruptive when this schema has to be changed,
typically resulting in having the database or at least the involved tables not available during the
schema change. No-SQL databases fail to provide ACID consistency guarantees. On the other hand,
most of them they are able to scale out, although not all kinds have this ability. Some of them are
able to scale out but not linearly or not to large numbers of nodes.

3. NewSQL databases

NewSQL databases appear as a new approach to address the requirements of SQL databases but
trying to remove part or all of their limitations. The direction of NewSQL databases lie in bringing
new capabilities to old traditional SQL databases by leveraging approaches from NoSQL and/or new
data warehouse technologies. Some try to improve the scalability of storage. That is normally
achieved by relying on some NoSQL technology or adopting an approach similar to some NoSQL
technology. Scaling queries was an already solved problem. However, scaling inserts and updates
had two problems. The first one is the inefficiency of ingesting data. The second one is that inability
to scale out to large scale the ACID properties, that is, transactional management. Others have
tried to overcome the lack of scalability of the ingestion while others the lack of scalability of
transactional management.

NoSQL databases have different flavours and typically are divided into four categories:

1. Key-value data stores.

They are schema-less and allow any value associated to a key. In most cases they attain linear
scalability. Basically, each instance processes a fraction of the load. Since operations are based on
an individual key-value pair, the scalability does not pose any challenge and most of the times is
achieved. The schema-less approach provides a lot of flexibility. Basically, each row can have a
totally different schema. Obviously, that is not how they are used. But they allow to evolve the

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 44

schema without any major disruption. Of course, the queries have to do the extra work of being to
understand rows with different schema versions, but since normally, the schema are additive, they
add new columns or new variants, it is easy to handle. Key-value data stores excel at ingesting data
very efficiently. Due to the fact that they are schema-less they can just store the data. This is very
inefficient for querying, and normally they provide very little capabilities for querying such as
getting the value associated to a key. In most cases they are based on hashing so they are unable to
perform basic range scans. Example of key-value data stores are Cassandra and DynamoDB.

2. Document oriented databases

They support semi structured data normally written in a language such as JSON or XML. Their main
capability is that being able to store data in one of these languages efficiently and being able to
perform queries for these data in an effective way. Representing these data in SQL is just a
nightmare and doing queries of this relational schema even a worse nightmare. That is why they
have succeeded. Some of them scale out in a limited way and not linearly, whilst some others do
better and scale out linearly. The main shortcoming is that they do not support the ACID properties
and that they are inefficient querying data that is structured in nature. Structured data can be
queried one to two orders of magnitude more efficiently with SQL databases. Examples in this
category are MongoDB and Couchbase.

3. Graph databases

They specialize on storing and querying graph data. Graph data represented in a relational format
becomes very expensive to query. The reason is that to traverse a path from a given vertex in the
graph, one has to perform many queries, one per edge stemming from the vertex and as many
times as the longest path sought in the graph. These results into too many client-server
invocations. If the graph does not fit into memory, then it is even a bigger disaster since disk
accesses will be involved for most of the queries. Also, the queries cannot be programmed in SQL
and has to be performed programmatically. Graph databases on the other hand, they have a query
language in which with a single invocation solve the problem. Data is stored to maximize locality of
a vertex with contiguous vertexes. However, graph databases when they don’t fit in a single node,
then they start suffering from the same problem when they become distributed losing their
efficiency and having a performance gain that is lost very soon with the system size in number of
nodes. At some point a relational schema solution becomes more efficient than the graph solution
for a large number of nodes. A widely used graph database is Neo4J.

4. Wide column data stores

These data stores have more capabilities than key-value data stores. They typically perform range
partitioning thus, supporting range queries. In fact, they might support some limited basic filtering.
They are still schemaless. They also support vertical partitioning that can be convenient when the
number of columns is very high. They have some notion of schema but still they are quite flexible in
it. Example of this kind of data stores are BigTable and HBase.

In addition to the above categories, we have stream data managers already explored in the previous
section and systems like Kafka that are streaming data managers but are persistent, and machine learning
infrastructure such as Map Reduce, Spark and Pandas. Large organizations such as the ones in the Finance
and Insurance verticals, typically have databases of many of the above kinds, with many instances of each
category using the same brand or even different brands.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 44

The main issue is that for analytical pipelines they have to move data across databases, many times having
to adapt, modify or enrich the data. For this, ETL (Extract Transform Load) tools have been being used to
perform batch processing and moving data from one database into another transforming the data as
necessary. More recently a different approach such as ELT (Extract Load Transform) has been used.
However, batch processing is not always feasible and it is required to acquire the data in real-time or near
real-time when it is updated. For this purpose, CDC (Change Data Capture) infrastructure has been created
that enables to get the changes from an operational database and then do something with these changes
like storing it in some other database or do some processing like triggering events. In this task, we envision
to take benefit from the CDC infrastructure in order to create the Intelligent Data Pipeline that INFINITECH
needs to provide.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 44

4 Intelligent Data Pipeline: The INFINITECH Approach
In INFINITECH, we are looking at how to simplify these data pipelines and adopt a uniform simple approach
for them. Data pipelines get complicated mainly due to the mismatch of capabilities across the different
kinds of systems. Many times data pipelines get very complex because of real-time requirements. One
solultion is the adaptaion of an architecture, which is well known as lambda architecture.

The lambda architecture combines techniques from batch processing with data streaming to be able to
process data in a real-time manner. The lambda architecture is motivated by the lack of scalability of
operational SQL databases. The architecture consists of three layers:

1. Batch layer.

It is based on append only storage, typically a data lake, such as HDFS. Then, it relies on map-
reduce for processing new batches of data in the forms of files. This batch layer provides a view
in a read-only database. Depending on the problem being solved, the output might need to
fully re-compute all the data to be accurate. After each iteration, a new view of the current
data is provided. This approach is quite inefficient but it is solving a scalability problem that
when it was invented did not have a good solution, the processing of tweets in Twitter.

2. Speed layer.

This layer is based on data streaming. In the original system at twitter it was accomplished by
the Storm data streaming engine. It basically processes new data to complement the batch
view with the most recent data. This layer does not aim for accuracy, which is usually very
crucial for applications in the insurance and finance sector, but it provides more recent data to
the global view achieved with the architecture.

3. Serving layer.

Figure 2: A typical lambda architecture

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 44

The serving layer processes the queries over the views provided by both the batch and speed
layer. Batch views are indexed to be able to answer queries with low response times and
combines them with the real-time view to provide the answer to the query combining both
real-time data and historical data. This layer typically uses some key-value data store to
implement the indexes over the batch views.

The main shortcoming of the lambda architectures is its complexity and the need to have totally different
code bases for each layer that have to be coordinated to be fully in sync. Maintenance of the platform is
very hard since debugging implies understanding the different layers with totally different natures, involved
technologies and approaches.

Other more traditional architectures are based on combining an operational database with a data
warehouse. The operational database deals with more recent data while the data warehouse deals with
historical data. In this architecture, queries can only see either the recent data or historical data, but not a
combination of both as it was done in the lambda architecture. In this architecture there is a periodic
process that copies data from the operational database into the data warehouse. This periodic process has
to be performed very carefully since it can hamper the quality of service of the operational database. This
periodic process is most of the time achieved by ETL tools. Many times this process is performed over the
weekends in businesses where their main workload comes during weekdays. Another problem that this
architecture exhibits is the fact that the data warehouse typically cannot be queried while it is being
loaded, at least the tables that are being loaded. This forces to split the time of the data warehouse into
loading and processing. When the loading process is daily, finally the day is split into loading and
processing. The processing time consumes a fraction of hours of the day that depends on the analytical
queries that have to be answered daily. It leaves a window of time for loading data that is the remaining
hours of the day. At some point data warehouses cannot ingest more data because the loading window is
exhausted. We name this architecture current-historical data splitting.

Due to the saturation of the data warehouse is a common problem, another architectural pattern has been
devised to deal with this issue in an architectural pattern that we name data warehouse offloading. This
pattern relies in creating small views of the data contained by the data warehouse and store them on
independent databases, typically called data marts. Depending on the size of the data and the complexity
of the queries data marts can be handled by operational SQL databases or they might need a data manager
with OLAP capabilities that might be another data warehouse or a data lake plus an OLAP engine that works
over data lakes.

In some other cases, the problem lies in the fact that the operational database cannot handle the whole
workload due to its lack of scalability and part of this workload can be performed without being real-time.
In these cases, a copy of the database or the relevant part of the data of the database is copied into
another operational database during the time that the operator is not being used, normally, weekends or
nights, depending on how long the copy of the database takes. If it takes less than the night time is
performed daily. If it takes more than that time is performed over the weekend. If it takes more than then
weekend, it cannot be done with this architectural pattern. We call this architectural pattern database
snapshotting.

In other cases, there are real-time or quasi real-time requirements and the database snapshotting does not
solve the problem. In this case, a CDC (Change Data Capture) system is used that captures changes in the
operational data and inject them into another operational database. The CDC is only applied over the
fraction of the data that will be processed by the other operational database. The workload is not
performed over the operational database due to technical or financial reasons. The technical reason is that

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 44

the operational database cannot handle the full workload and some processes need to be offloaded to
another database. The financial reason is that the operational database can handle the workload but the
price is too high. The latter typically happens with the mainframe. We name this architecture operational
database offloading.

A very typical and important workload that lies in having to ingest high volumes of detailed data and
compute recurrent aggregate analytical queries over this detailed data. This workload has been addressed
with more specific architectures. One of such architectures uses an operational database for ingesting the
detailed data, and uses another operational database to store aggregated views of the data. These
aggregated views are generated periodically by means of an ETL process that traverses the data from the
previous period in the detail operational database, computes the aggregations and store them in the
aggregate operational database. The recurrent queries are processed over the aggregation database. Since
the database contains already the pre-computed aggregates the queries are light enough to be computed
at an operational database. We call this architecture detail-aggregate view splitting. One of the main
shortcomings of this architecture is the fact that the aggregate queries have an obsolete view of the data
since they miss the data from the last period. Typical period lengths go from 15 minutes to hours or a full
day. Some times this architecture is solved.

The kind of operational databases typically used for the above architecture are SQL operational databases
and since they do not scale, they require to use an additional architectural pattern that we call database
sharding. Sharding lies in overcoming the lack of scalability or linear scalability of an operational database
by storing fractions of the data on different database independent servers. Thus, each database server
handles a workload small enough, and by aggregating the power of many different database manager
instances the system can scale. The main shortcomings of this architecture lie in that now queries cannot
be performed over the logical database, since each database manager instance only knows about the
fraction of data it is storing and cannot query any other data. Another major shortcoming lies in that there
are no transactions across database instances meaning that is stored data across different instances are
related, they don’t have consistency guarantees neither in the advent of concurrent reads and writes or in
the advent of failures.

Other systems tackle the previous problem of recurrent aggregate queries by computing the aggregates on
the application side using the memory. So basically, this in-memory aggregates are computed and being
maintained as time progresses. The recurrent aggregation queries are solved by reading this in-memory
aggregations, while access to the detail data are solved by reading from the operational database, many
times using sharding. We name this architectural pattern in-memory application aggregations.

Another approach to deal with recurrent aggregate queries at scale lies in what we call federated
aggregations. The architectural pattern lies in using sharding to store fractions of the detail data and then
use a federator at application level that basically queries the individual sharded database managers getting
the resultsets of the individual aggregate queries and then, aggregate them manually to compute the
aggregate query over the logical database. This architectural pattern is applied frequently for monitoring
systems and it is called in that context Monitor of Monitors (MoM).

In INFINITECH we envision a holistic solution to the issue of data pipelining that works with all kinds of
storage, handling efficiently aggregates, and addresses the need for temporal storages to deal with
snapshot databases. This holistic solution aims at minimizing the number of storage systems needed to
develop an analytical pipeline and addressing all of the above identified architectural patterns for data
pipelining. It also aims at unifying the data pipelines combining data streaming and data at rest.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 44

In what follows we provide the list of targeted architectural patterns for data pipelining and how they will
be automated and solved with INFINITECH’s innovations in the data management layer, which are
incorporated into the INFINISTORE data store

1. Lambda architecture.

In INFINITECH the lambda architecture is totally trivialized by removing the at least three data
management technologies and three different code bases with ad hoc code for each of the queries
and just having a single database manager with declarative queries in SQL. The lambda architecture
is simply substituted by the INFINISTORE, which relies on the LeanXcale database. LeanXcale scales
out linearly its operational storage solving one of the key shortcomings of operational databases
that motivate the lambda architecture. The second obstacle from operational databases was its
inefficiency in ingesting data that makes them too expensive even for data ingestions they can
manage. As the database grows, the cache is rendered ineffective and each insert requires to read
a leaf node that requires first to evict a node from the cache and write to disk. This means that
every write requires two IOs. LeanXcale solves this issue by providing the efficiency of key-value
data stores in ingesting data thanks to the blending of SQL and NoSQL capabilities due to the use of
a new variant of LSM trees. With this approach, updates and inserts are cached in an in-memory
search tree and periodically propagated all together to the persisted B+ tree. Thanks to this
approach the locality of updates and inserts on each leaf of the B+ tree is greatly increased
amortizing the cost of each IO among many rows. The third issue solved by INFINISTORE that is not
solved by the lambda architecture, it is the ease to query. The lambda architecture requires
developing programmatically each query with three different code passes for each of the three
layers. Using the INFINITECH data management layer and its INFINISTORE, queries are written in
simple and widely known SQL. SQL queries are automatically optimized unlike the programmatic
queries in the lambda architecture that require manual optimization across three different code
basis for each of the layers. The fourth issue that is solved is the one of the cost of recurrent
aggregation queries. In the lambda architecture, this issue is typically solved in the speed layer
using data streaming. In INFINISTORE, with the development and adaption of the online
aggregates, we enable real-time aggregation without the problems of operational databases and
providing a low cost solution with low response time.

2. Current-Historical Data Splitting.

In this approach, data is split between an operational database and a data warehouse or a data
lake. The current data is kept on the operational database and historic data in the data warehouse
or data lake. However, queries across all the data are not supported with this architectural pattern.
In INFINITECH a new pattern will be used to solve this problem named Real-Time Data
warehousing. This pattern will be solved by a new innovation that will be introduced in LeanXcale,
namely, the ability to split analytical queries over LeanXcale and an external data warehouse.
Basically, it will copy older fragments of data into the data warehouse periodically. LeanXcale will
keep the recent data and some of the more recent historical data. The data warehouse will keep
only historical data. Queries over recent data will be solved by LeanXcale, and queries over
historical data will be solved by the data warehouse. Queries across both kinds of data will be
solved in the following way. If they do not contain joins, basically the query will be executed with a
predicate over time on both databases guaranteeing a split without overlapping and without
missing any data item and the union of both results will be returned as the result of the query. If
the query contains joins then it will be split into four subqueries. One subquery doing the joins
across recent data that will be pushed down to LeanXcale. One subquery doing joins across

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 44

historical data that will be pushed down to the data warehouse. And a third subquery doing joins
across recent and historical data that will be solved at LeanXcale that will used the data warehouse
as external data source for reading the data. In this way, the bulk of the historical data query is
performed by the data warehouse, while the rest of the query is performed by LeanXcale. This
approach enables to deliver real-time queries over both recent and historical data giving a 360
degree view of the data.

3. Data warehouse offloading.

In data warehouse offloading due to the saturation of the data warehouse data marts are used
using other database managers and making a more complex architecture that requires multiple
ETLs and copies of the data. Within INFINITECH this issue can be solved in two ways: One way is by
using operational database offloading to INFINISTORE with the dataset of the data mart. The
advantage of this approach with respect to data warehouse offloading is that the data mart
contains data that is real-time, instead of obsolete data copied via a periodic ETL. The second way is
to use database snapshotting taking advantage of the fast speed and high efficiency of loading of
LeanXcale. In this way, a data mart can be created periodically with the same or higher freshness
than a data mart would have. The advantage is that the copy would come directly from the
operational database instead of coming from the data warehouse thus resulting in fresher data.

4. Database snapshotting.

In INFINITECH database snapshotting can be actually be avoided by using its data management
layer as the operational database. This can be done thanks to the linear scalability of the
INFINISTORE that does not require offloading part of the workload to other databases. However, in
many cases, organizations are not ready to migrate their operational database because of the large
amount of code relying on specific features of the underlying database. This is the case with
mainframes with large Cobol programs and batch programs in JCL. In that case, INFINITECH by
relying on LeanXcale can provide a more effective snapshotting or even able to substitute
snapshotting by operational database offloading that provides full real-time data. In the case of
snapshotting, thanks to the efficiency and speed of data ingestion of LeanXcale, snapshotting can
be performed daily instead of weekly since load processes that takes days are reduced to minutes.
But snapshotting can be substituted by operational database offloading thanks to the scalability
and speed of ingestion of LeanXcale. The main benefit is that data freshness changes from weekly
to real-time. This speed in ingestion is achieved thanks to LeanXcale capability of ingesting and
querying data with the same efficiency independently of the dataset size. This is achieved by means
of bidimensional partitioning. The bidimensional partitioning exploits the timestamp in the key of
historical data to partition tables on a second dimension. Tables in LeanXcale are partitioned
horizontally through the primary key. But then, they are automatically split on the time dimension
(or an auto-increment key, whatever is available) to guarantee that the table partition fits in
memory and thus, the load becomes CPU bound and thus, very fast. Traditional SQL databases get
slower as data grows due to the B+ tree used to store data becomes bigger in both terms of
number of levels and number of nodes. LeanXcale thanks to bi-dimensional partitioning keeps the
time to ingest data constant. Queries are also speeded up thanks to intra-operator parallelization of
all algebraic operators below joins.

5. Operational database offloading.

One of the main limitations of the operational database offloading is the fraction of data offloaded
to a single database. Typically, this approach is performed with mainframes that can process very
high workloads that soon overload other operational databases with much more limited capacity

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 44

and incapable of scaling. Again by relying on LeanXcale, INFINITECH will overcome these limitations.
LeanXcale can even support to full set of changes performed over the mainframe thanks to its
scalability so it does not set any limitation on the dataset size and rate of data updates/inserts over
this dataset.

6. Detail-aggregate view splitting.

In INFINITECH this pattern is totally removed because it is not needed anymore. By taking
advantage of its declarative real time analytical framework and the so called online aggregates
developed under the scope of T5.3, aggregate tables are built incrementally as base data is
inserted. This implies to increase the cost of ingestion, but since LeanXcale is more than one order
of magnitude more efficient than the market leader, it means that it can still ingest the data more
efficiently despite the online aggregation, but then, recurrent aggregation analytical queries
become costless since they only have to read a single row or a bunch of rows to provide the answer
thanks to the fact that each aggregation has been already computed incrementally.

7. Database sharding.

Database sharding is not needed in INFINITECH thanks to the linear scalability of its INFINISTORE.
Thus, what before required programmatically splitting the data ingestion and data queries across
independent database instances, now, it is not needed anymore. LeanXcale is able to scale out
linearly to hundreds of nodes.

8. In-memory application aggregations.

In INFINITECH in-memory application aggregations are not needed anymore removing all the
problems around them like the loss of data in the advent of failures and what is more all the
development and maintenance cost of the code required to perform the in-memory aggregations.
Not only that in-memory aggregations work as far they can be computed in a single node, when
multiple nodes are required they become extremely complex and in most cases out of reach of
technical teams. In INFINITECH the online aggregates from LeanXcale will be leveraged to compute
the aggregations for recurrent aggregation queries. LeanXcale keeps internally the relationship
between tables (called parent tables) and aggregate tables built from the inserts in these tables
(called child aggregate tables). When aggregation queries are issued, the query optimizer has been
enriched with new rules to automatically detect which aggregations on the parent table can be
accelerated by using the aggregations in the child aggregate table. This results in transparent
improvement of all aggregations in the parent table by simply declaring a child aggregate table
(obviously of the ones that can exploit the child table aggregates). More information can be found
at the relevant D5.4 and D5.5 deliverables (“Framework for Declarative and Configurable
Analytics”)/

9. Federated aggregations.

Federated aggregations share the motivation of in-memory aggregations but basically enable them
to extend to a multiple set of nodes. As with in-memory application aggregations, INFINITECH fully
solve the problem in a trial way by relying on its online aggregates.

10. Streaming data and data at rest.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 44

Several applications require to combine streaming data with data at rest. In INFINITECH these
applications will be addressed by using different mechanisms. When streaming data needs to be
correlated with persistent data it will be attained by means of the integration of INFINISTORE with
Flink. When streaming data needs to produce a persistent output, it will also be addressed by
means of the Flink and INFINISTORE integration. However, sometimes this integration results
complex because it implies writing queries in two different subsystems and it is complex their
integration. For this reason, we will develop an integration of SQL with an SQL-like query language
for streaming data in the form of a query language that integrates both the access to data at rest
and the access to streaming data. By using a unified language, it becomes trivial the use of a
column or set of columns from a streaming tuple in a query performed over the persistent storage
and similarly, to integrate the output of an SQL query into the output stream of a data streaming
operator that correlates streaming data with persistent data.

11. NoSQL and SQL data.

As previously discussed organizations have a myriad of different kinds of database managers that
include both SQL and NoSQL databases. The main issue is that data stored on each family of data
stores belongs to a single logical database of the organization and this split is artificial due to the
technical limitations of different database technologies that prevent from using a single database
for all kinds of data. In INFINITECH polyglot support will be provided to solve the data pipelines
across different families of databases. Polyglot data support will enable to query from a common
endpoint to SQL data stored in LeanXcale or other SQL databases and data stored in key-value data
stores, wide-column data stores, document-oriented data stores, and graph databases.

Finally, INFINITECH will also integrate the different tools require to support all the data pipelines including
Change Data Capture (CDC) systems and ETL tools to provide a holistic solution to the automation of data
pipelining.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 44

5 Intelligent Data Pipeline in practice
In this section we provide insights along with a concrete example on how to make use of the INFINITECH

Intelligent Data Pipeline, instead of using complex architecture designs as previously presented. We

demonstrate how to setup, configure and deploy such a data pipeline in order to move data from an

operational datastore to INFINISTORE. We envision the scenario that an operational datastore is accepting

the transactional workload, however, it cannot be used to efficiently execute analytical queries and thus,

data (or fragments of data) should be migrated either to a data warehouse or to another operational

datastore. Typically, these use cases are solved by applying architecture designs such as operational

database offloading or current-historical data splitting. Even if our scenario is limited to these

architectures, our solution is generic and can be used to implement each type of data pipeline, as the

datastore to migrate data to or from, is the INFINISTORE, which can be used to solve all the architectures in

a holistic way.

In our example, we make use of MySQL datastore that will take the role of the operational database of a

finance or insurance enterprise. MySQL is widely used and ensures database transactions and provides

relational query processing capabilities. However, it suffers when it comes to analytics under operational

workload. Due to this, there is often the need to migrate periodically data to a data warehouse that can be

used instead for such type of processing. The data migration often takes place as a batch process that takes

place during night periods that the database is almost idle and takes a lot of time, which can typically can

be couple of hours. If the process fails during the night, the data warehouse is not updated, as there is no

time to repeat such a time-consuming process, resulting in lack of data coming from the last day. With the

INFINITECH data pipeline, we want to send data from the operational datastore to the INFINISTORE when a

data modification operation takes place. This way, the INFINISTORE will always have fresh data, without

having to wait for the night when the batch processing takes place. Moreover, as INFINISTORE provides

Hybrid Transactional and Analytical Processing (HTAP) capabilities, we can offload data to the latter in real-

time, no matter the rate of data ingestion, while at the same time, it can be used to for advanced analytical

processing. This is due to the outcomes of the task T3.1 “Framework for Seamless Data Management and

HTAP”, with the reader being advised to go through the corresponding report D3.2 “Hybrid

Transactional/Analytics Processing for Finance and Insurance Applications – II” for more details.

For the implementation of the INFINITECH Intelligent Pipelines, we rely on the Debezium3 that implements

the Change Data Capture (CDC) paradigm. Before getting into more details, the following subsection

provides a general overview of what Debezium can offer.

5.1 Use of Debezium for Change Data Capture
Debezium is an open source distributed platform that can be used for implementation that relies on the

change data capture. It provides a set of distributed services that can monitor changes in a database

schema, capture those changes in a per data-item level, whether these changes are related with an

insertion, update or delete of a data record, and publishes these changes so that other components can

react. Other components might be both software and application level components, other datastores and

steaming processing frameworks. In INFINITECH, we make use of it to i) send data modifications into the

INFINISTORE and ii) send data modifications of INFINISTORE to other data processing frameworks. The

latter will be the case of the Semantic Interoperability engine that is being built under the scope of WP4.

3 https://debezium.io/

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 44

What Debezium does is that it keeps a transaction log that stores data modification operations that

happens in a per data item level in the source database, when data is finally committed, and propagates

this log to different listeners that can react either by triggering specific events, or store the data in a

persistent storage medium of the target database that listens to this log. That way, it implements the

change data capture paradigm which allows the user to monitor and capture data changes that takes place

in the source and send these changes to the target. Typically, the source might be an operational datastore

and the target a data warehouse. As a result, this approach clearly fits to the scenario that we

demonstrate.

According to its official web site, Debezium provides support for data connectivity for a variety of different

database vendors, such as MySQL database servers, MongoDB replica sets or sharded clusters, PostgreSQL

servers and SQL Server databases. This allows us to rely on this framework to migrate data from different

vendors that are dominant in the insurance and finance sector. Moreover, it provides an interface that can

be used by system developers to create additional connectors to other mediums. In INFINITECH, we have

developed a connector to allow the interaction with INFINISTORE.

A typical deployment of Debezium consists of various components that are involved in the data pipeline for

the change data capture. Typically, a cluster of Kafka brokers as the medium for Debezium to exchange the

transaction logs among the involved listeners. The Debezium records all the events of data modification

and stores them as transaction logs in Kafka, from which the application level components or other data

management system can consume those logs and respond accordingly. Additionally, the deployment

requires a Debezium connector that monitors the source database. We can have one connector per

monitoring database. As connector capturers the data changes that happen in the source database, they

persist the logs into Kafka, and from them, we can retrieve those logs and store the changes into

INFINISTORE.

5.2 From an operational datastore to INFINISTORE
One important requirement found in many organizations in finance and insurance sector is to have an

instance of an analytical database management system running in parallel with their databases while not

changing their existing systems. The solution that INFINITECH proposes is to make use of its Intelligent Data

Pipeline which achieves this is by the implementation of the change data capture, using Debezium. In this

subsection, we explain how to integrate a MySQL database with INFINISTORE, although this approach is

generic enough and can be used with other source databases, such as PostgreSQL or MongoDB.

Following the basic concepts of Debezium that were previously described, the overall architecture is

depicted in Figure 3.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 44

Figure 3: INFINITECH Data Pipeline moving data from MySQL to INFINISTORE

The overall architecture involves the two databases that need to exchange data modifications via the

change data capture: the operational datastore of MySQL and the hybrid transactional and analytical

database of INFINISTORE, which is based on the technology that LeanXcale is implementing under the

scope of the project. Debezium is the medium to monitor changes in the MySQL side and sends transaction

logs using a specific connector to Kafka. Kafka is used as the intermediate data queue that persistently

stored data sent by the Debezium connector and are retrieved to be stored in LeanXcale. This also exploits

the outcomes of task T3.1 “Framework for Seamless Data Management and HTAP”, and more precisely the

implementation of the Kafka connector developed there and is being documented in the corresponding

report D3.2 “Hybrid Transactional/Analytics Processing for Finance and Insurance Applications – II” for

more details.

The creation of the components is performed with docker images that include, according to the

architecture of Debezium, the following:

• Apache Zookeeper.

• Apache Kafka.

• Kafka Connect / Debezium image with the modification of the Kafka Connector for the INFINISTORE

placed into the corresponding connect directory.

• An empty MySQL database image into which we perform some create statements.

• An empty instance of the INFINISTORE into which all changes from MySQL are replicated.

At this phase of the project, we have not migrated yet our solution to be compliant with the INFINITECH

way of deployment, as the overall implementation is under validation. Therefore, we make use of the

docker-compose to configure the deployment and integration of all the involved components. The docker-

compose.yaml that someone can use is the following:

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 44

version: '2'

services:

 zookeeper:

 image: debezium/zookeeper:1.1

 ports:

 - 2181:2181

 - 2888:2888

 - 3888:3888

 kafka:

 image: harbor.infinitech-h2020.eu/interface/lx-kafka:latest

 ports:

 - 9092:9092

 links:

 - zookeeper

 environment:

 - ZOOKEEPER_CONNECT=zookeeper:2181

 mysql:

 image: debezium/example-mysql:1.1

 ports:

 - 3306:3306

 environment:

 - MYSQL_ROOT_PASSWORD=debezium

 - MYSQL_USER=mysqluser

 - MYSQL_PASSWORD=mysqlpw

 connect:

 image: debezium/connect:1.1

 ports:

 - 8083:8083

 links:

 - kafka

 - mysql

 environment:

 - BOOTSTRAP_SERVERS=kafka:9092

 - GROUP_ID=1

 - CONFIG_STORAGE_TOPIC=my_connect_configs

 - OFFSET_STORAGE_TOPIC=my_connect_offsets

 - STATUS_STORAGE_TOPIC=my_connect_statuses

It is noticed that we make use of a zookeeper instance that is needed by the Debezium, the MySQL

database that will be the operational database from which will send data modifications to the INFINISTORE,

the corresponding connector of Debezium that will monitor the MySQL to write the transaction logs and

finally, the Kafka queue. The reader should also notice that we make use of the Kafka image that is

provided by the INFINISTORE.

In order to configure the Debezium connector to monitor the MySQL database and send results to

INFINISTORE, we need to provide the following configuration file:

{

 "name": "inventory-connector",

 "config": {

 "connector.class": "io.debezium.connector.mysql.MySqlConnector",

 "tasks.max": "1",

 "database.hostname": "mysql",

 "database.port": "3306",

 "database.user": "debezium",

 "database.password": "dbz",

 "database.server.id": "184054",

 "database.server.name": "dbserver1",

 "database.whitelist": "inventory",

 "database.history.kafka.bootstrap.servers": "kafka:9092",

 "database.history.kafka.topic": "schema-changes.inventory",

 "transforms": "route,unwrap",

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 44

 "transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",

 "transforms.route.regex": "([^.]+)\\.([^.]+)\\.([^.]+)",

 "transforms.route.replacement": "$3",

 "transforms.unwrap.type": "io.debezium.transforms.UnwrapFromEnvelope",

 "transforms.unwrap.drop.tombstones": "false",

 "transforms.unwrap.delete.handling.mode": "none"

 }

}

This configuration is detailed explained in the Debezium documentation and is out of the scope of this

report. However, to provide a brief explanation, it defines a MySQL Connector which will be used, provides

the hostname and port where the operational database is deployed, the username and password to

connect, along with information regarding the Kafka queue that will be used to send the transaction logs. It

is important to also mention that in the MySQL connector, we include two transformations of “transforms”:

“route,unwrap”. With the transformation route, the connector puts the messages into the topic using the

table name. With the second transformation, unwrap, the original message is changed to be compatible

with other connectors, such as the connector provided for INFINISTORE. Let’s save this configuration in file

named register-mysql.json. The Debezium connector provides a REST API that can be used to configure it,

so the following command can actually be used:

curl -i -X POST -H "Accept:application/json" -H "Content-Type:application/json"

http://localhost:8083/connectors/ -d @register-mysql.json

Now we would need to also configure the connector of the INFINISTORE. In our scenario, we will make use

of the following configuration:

{

 "name": "lx-connector",

 "config": {

 "connector.class": "com.leanxcale.connector.kafka.LXSinkConnector",

 "tasks.max": "1",

 "topics": "t1",

 "connection.properties": "lx://lx:9876/db@APP",

 "auto.create": "true",

 "delete.enabled": "true",

 "insert.mode": "upsert",

 "batch.size": "500",

 "connection.check.timeout": "20",

 "sink.connection.mode": "kivi",

 "sink.transactional": "false",

 "table.name.format": "t1",

 "pk.mode": "record_key",

 “pk.fields” : “id”,

 "fields.whitelist": "field1,field2"

 }

}

In this example, we indicate only one table (t1) in the connector where the table is auto-created at the first

insert. We can delete rows by setting “delete.enabled”: “true”.

Similarly, we save the configuration in a file named register-lx.json and we can now configure the connector

of INFINISTORRE using the REST API of Debezium, with the following command:

curl -i -X POST -H "Accept:application/json" -H "Content-Type:application/json"

http://localhost:8083/connectors/ -d @register-lx.json

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 44

After having properly configured the Debezium connectors, we can start creating records to the MySQL

operational data store, and see how everything works in practice. We first need to connect to the container

of MySQL and we will create a table, containing three fields, and add a data row. The following lines should

be executed from the MySQL command line client:

CREATE TABLE t1(id int, field1 int, field2 varchar(10), PRIMARY KEY(id));

INSERT INTO t1 VALUES (1, 1, ‘one’);

Taking a look at the logs, we should observe something like the following:

connect_1 | 2021-07-09 13:39:34,676 INFO || using percentage to target request of new batch

0.85 [com.leanxcale.txnmgmt.lxinfo.client.TSProvider]

connect_1 | 2021-07-09 13:39:34,678 WARN || Socket using nagle true

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient]

connect_1 | 2021-07-09 13:39:34,680 INFO || LeanXcaleInfoClient initialized on port 58514

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient]

connect_1 | 2021-07-09 13:39:34,680 INFO || LeanXcaleInfoClient obtained LXIS instances for

HA: {} [com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient]

connect_1 | kv.Conn[1]: *** no.auth = 1

connect_1 | kv.Conn[1]: *** no.crypt = 2

connect_1 | kv.Conn[1]: *** no.flushctlout = 1

connect_1 | kv.Conn[1]: *** no.npjit = 1

connect_1 | kv.Conn[1]: *** no.tplfrag = 1

connect_1 | kv.Conn[1]: *** no.xmbiocuts = 1

connect_1 | kv.Conn[1]: *** no.dstids = 1

connect_1 | kv.Conn[1]: *** test.resize = 1

connect_1 | 2021-07-09 13:39:34,720 INFO || Table

com.leanxcale.connector.kafka.utils.metadata.TableId@4e29b9 is not registered for the connector.

Checking db... [com.leanxcale.connector.kafka.sink.impl.LXWriterImpl]

connect_1 | 2021-07-09 13:39:34,722 INFO || Table t1 not found. Creating it

[com.leanxcale.connector.kafka.sink.impl.LXWriterImpl]

connect_1 | 2021-07-09 13:39:34,740 INFO || Registering table t1 in connector

[com.leanxcale.connector.kafka.sink.impl.LXWriterImpl]

connect_1 | 2021-07-09 13:39:34,755 INFO || Closing sessionFactory

[com.leanxcale.kivi.session.SessionFactory]

connect_1 | 2021-07-09 13:39:34,756 INFO || Closing socket 58514

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient]

connect_1 | 2021-07-09 13:39:34,756 INFO || Disconnecting

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient]

connect_1 | 2021-07-09 13:39:34,756 INFO || Remote disconnected

[com.leanxcale.txnmgmt.lxinfo.client.LXInfoClientPeriodic]

connect_1 | kv.Conn[1]: metaclientproc aborted by user

connect_1 | 2021-07-09 13:39:34,757 INFO || Socket closed

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient]

connect_1 | 2021-07-09 13:39:34,757 INFO || Closing socket 58514

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient]

connect_1 | 2021-07-09 13:39:34,758 INFO || Disconnecting

[com.leanxcale.txnmgmt.lxinfo.client.LeanxcaleInfoClient]

connect_1 | 2021-07-09 13:39:36,496 INFO || Tuples inserted: 0 commited in last 10000 ms

[com.leanxcale.connector.kafka.insert.impl.CommitLogger]

connect_1 | 2021-07-09 13:39:36,496 INFO || Tuples deleted: 0 commited in last 10000 ms

[com.leanxcale.connector.kafka.insert.impl.CommitLogger]

connect_1 | 2021-07-09 13:39:36,496 INFO || Tuples upserted: 1 commited in last 10000 ms

[com.leanxcale.connector.kafka.insert.impl.CommitLogger]

connect_1 | 2021-07-09 13:39:36,496 INFO || Tuples updated: 0 commited in last 10000 ms

[com.leanxcale.connector.kafka.insert.impl.CommitLogger]

connect_1 | 2021-07-09 13:39:40,015 INFO || WorkerSourceTask{id=inventory-connector-0}

Committing offsets [org.apache.kafka.connect.runtime.WorkerSourceTask]

connect_1 | 2021-07-09 13:39:40,015 INFO || WorkerSourceTask{id=inventory-connector-0}

flushing 0 outstanding messages for offset commit

[org.apache.kafka.connect.runtime.WorkerSourceTask]

connect_1 | 2021-07-09 13:39:40,022 INFO || WorkerSourceTask{id=inventory-connector-0}

Finished commitOffsets successfully in 7 ms [org.apache.kafka.connect.runtime.WorkerSourceTask]

connect_1 | 2021-07-09 13:39:46,470 INFO || Received 0 records

[com.leanxcale.connector.kafka.sink.LXSinkTask]

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 44

connect_1 | 2021-07-09 13:39:46,471 INFO || WorkerSinkTask{id=lx-connector-0} Committing

offsets asynchronously using sequence number 1: {t1-0=OffsetAndMetadata{offset=1, leaderEpoch=null,

metadata=''}} [org.apache.kafka.connect.runtime.WorkerSinkTask]

This shows us that the connector to the INFINISTORE has been triggered when we added a row, and the line

with bold tells us that 1 record has been upserted to INFINISTORE. If we open an SQL client to the latter, we

can see that the row has been now added transparently, with id as the primary key, having both fields

field1, field2 as defied in the register-lx.json configuration file. We can now add records in whatever high

rate is supported by the source operational datastore, and taking benefit of the INFINISTORE capabilities

developed within the project, we can transparently use the change data capture to implement our Data

Pipeline and migrate data to INFINISTORE, in real time.

5.3 Use of Debezium for Change Data Capture with Avro
Serialization

In this subsection, we continue working with Debezium for change data capture and INFINISTORE,

configured for a common scenario that a finance organization has a large operational database and

requires to use operational database offloading or other architecture to migrate data from the operational

store to another data base management system. We still make use of MySQL as the source database, but

instead, we configure Avro as the message format instead of JSON. Being a more compact message, it can

offer significantly improved performance.

This time, our overall architecture is changed and is depicted in Figure 4.

Figure 4: INFINITECH Data Pipeline moving data from MySQL to INFINISTORE using Avro as data serializer

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 44

The main difference with the previous architecture is that messages are being serialized using the Avro

Schema Registry. The latter allows the messages to contain only the data related information and do not

need to replicate schema every time, which is the cases when sending JSON objects without encryption of

such tools.

The new configuration for docker-compose includes the new component schema-registry as a docker

image:

version: '2'

services:

 zookeeper:

 image: debezium/zookeeper:$

 ports:

 - 2181:2181

 - 2888:2888

 - 3888:3888

 kafka:

 image: debezium/kafka:$

 ports:

 - 9092:9092

 links:

 - zookeeper

 environment:

 - ZOOKEEPER_CONNECT=zookeeper:2181

 mysql:

 image: debezium/example-mysql:$

 ports:

 - 3306:3306

 environment:

 - MYSQL_ROOT_PASSWORD=debezium

 - MYSQL_USER=mysqluser

 - MYSQL_PASSWORD=mysqlpw

 schema-registry:

 image: confluentinc/cp-schema-registry

 ports:

 - 8181:8181

 - 8081:8081

 environment:

 - SCHEMA_REGISTRY_KAFKASTORE_CONNECTION_URL=zookeeper:2181

 - SCHEMA_REGISTRY_HOST_NAME=schema-registry

 - SCHEMA_REGISTRY_LISTENERS=http://schema-registry:8081

 links:

 - zookeeper

 connect:

 image: debezium/connect:$

 ports:

 - 8083:8083

 links:

 - kafka

 - mysql

 - schema-registry

 environment:

 - BOOTSTRAP_SERVERS=kafka:9092

 - GROUP_ID=1

 - CONFIG_STORAGE_TOPIC=my_connect_configs

 - OFFSET_STORAGE_TOPIC=my_connect_offsets

 - STATUS_STORAGE_TOPIC=my_connect_statuses

 - KEY_CONVERTER=io.confluent.connect.avro.AvroConverter

 - VALUE_CONVERTER=io.confluent.connect.avro.AvroConverter

 - INTERNAL_KEY_CONVERTER=org.apache.kafka.connect.json.JsonConverter

 - INTERNAL_VALUE_CONVERTER=org.apache.kafka.connect.json.JsonConverter

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 44

 - CONNECT_KEY_CONVERTER_SCHEMA_REGISTRY_URL=http://schema-registry:8081

 - CONNECT_VALUE_CONVERTER_SCHEMA_REGISTRY_URL=http://schema-registry:8081

For this example, we use a table with different types of fields:

CREATE TABLE example (

 id INTEGER NOT NULL PRIMARY KEY,

 name VARCHAR(255) NOT NULL,

 description VARCHAR(512),

 weight DOUBLE,

 date1 TIMESTAMP

);

Next, the registers are configured. In the source MySQL register, we now include all transformations as well
as the Avro converter.

{

 "name": "inventory-connector",

 "config": {

 "connector.class": "io.debezium.connector.mysql.MySqlConnector",

 "tasks.max": "1",

 "database.hostname": "mysql",

 "database.port": "3306",

 "database.user": "debezium",

 "database.password": "dbz",

 "database.server.id": "184054",

 "database.server.name": "dbserver1",

 "database.whitelist": "inventory",

 "database.history.kafka.bootstrap.servers": "kafka:9092",

 "database.history.kafka.topic": "schema-changes.inventory",

 "key.converter": "io.confluent.connect.avro.AvroConverter",

 "key.converter.schemas.enable": "false",

 "value.converter": "io.confluent.connect.avro.AvroConverter",

 "key.converter.schema.registry.url": "http://schema-registry:8081",

 "value.converter.schema.registry.url": "http://schema-registry:8081",

 "transforms": "route,unwrap,convert_date1",

 "transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",

 "transforms.route.regex": "([^.]+)\\.([^.]+)\\.([^.]+)",

 "transforms.route.replacement": "$3",

 "transforms.unwrap.type": "io.debezium.transforms.UnwrapFromEnvelope",

 "transforms.unwrap.drop.tombstones": "false",

 "transforms.unwrap.delete.handling.mode": "none",

 "transforms.convert_date1.type": "org.apache.kafka.connect.transforms.TimestampConverter$Value",

 "transforms.convert_date1.target.type": "Timestamp",

 "transforms.convert_date1.field": "date1",

 "transforms.convert_date1.format": "yyyy-MM-dd'T'HH:mm:ss'Z'"

 }

}

It is important to highlight that in this scenario, we added a new transformation for the Timestamp field in

order to send data as a Timestamp type instead of a String format. On the other hand, the LeanXcale sink

register remains simple and we only need to add the new fields of the schema and define the Avro

Converter:

{

 "name": "lx-connector",

 "config": {

 "connector.class": "com.leanxcale.connector.kafka.LXSinkConnector",

 "tasks.max": "1",

 "topics": "example",

 "connection.url": "lx://lx:9876",

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 44

 "connection.user": "APP",

 "connection.password": "APP",

 "connection.database": "db",

 "auto.create": "true",

 "delete.enabled": "true",

 "insert.mode": "upsert",

 "batch.size": "500",

 "connection.check.timeout": "20",

 "sink.connection.mode": "kivi",

 "sink.transactional": "false",

 "table.name.format": "$",

 "pk.mode": "record_key",

 "key.converter": "io.confluent.connect.avro.AvroConverter",

 "key.converter.schemas.enable": "false",

 "value.converter": "io.confluent.connect.avro.AvroConverter",

 "key.converter.schema.registry.url": "http://schema-registry:8081",

 "value.converter.schema.registry.url": "http://schema-registry:8081"

 }

}

We can now repeat the previous demonstrator, start all components via the docker-compose utility,

register the two connectors and start ingesting data to MySQL. The Debezium connector will monitor for

data modifications, it will send the corresponding transaction logs to Kafka encrypted by Avro and the Kafka

connector of INFINISTORE will finally store them.

5.4 Next Steps
After identifying the architecture designs used by modern enterprises in the insurance and finance sector in

order to solve common problems and to overcome technological barriers, we defined the notion of the

INFINITECH Intelligent Data Pipelines. The benefit of our approach is the use of the change data capture

paradigm along with the INFINISTORE as the main database management system that provides a variety of

innovations that has been described in other deliverables of the project.

Starting the second phase of the project, we continued by implementing our approach and validating its

feasibility. As it was mentioned, for our implementation we relied on the Debezium framework that allows

monitoring data modification in data sources and propagating these changes using transaction logs via

Kafka queues. At the time that this report was written, we have integrated the INFINISTORE with Debezium

to be used as the target data source. We have validated the whole implementation using operational

datastores as the source, and INFINISTORE as the target. With our approach, we benefit from the

innovations and prototypes that have been developed during the first reporting phase and are already

delivered and provided by INFINITECH. These are HTAP capabilities of the INFINISTORE, its support for high

data ingestion, the Kafka connector and the online aggregates. At this point, we have covered half of what

needs to be implemented to completely deliver the INFINITECH Data Pipelines.

In the next period, the focus will be given on implementing pipelines that have the INFINISTORE as the

source that needs to send data modifications to other targets. This will be used by scenarios that need to

consume data that is firstly stored to the operational datastore of INFINISTORE. Such use cases are the ones

that involve the use of the semantic interoperability framework of the project. The latter makes use of an

internal triple store and needs to get informed when new data are available. It provides data stream

connectors that get data feed for other sources and load the data to the triple store. Based on this, the

INFINITECH Data Pipeline can be used and will rely on the technology that is being currently built and

delivered under the scope of T5.2 “Incremental and Parallel Data Analytics”. One important outcome of this

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 38 of 44

task is the incremental scans that are being currently adopted by the INFINSTORE. This allows the core

storage engine of the datastore to propagate data modifications. Having that in place, the next step is to

implement the Debezium connector that will monitor the INFINISTORE and send transaction logs to a Kafka

queue, using the implementation that will be provided as part of that task. Having that in place, the

INFINITECH Data pipelines can also connect to the INFINISTORE with the streaming processing framework

of the project, as the latter can also consume data streams coming from a Kafka queue.

Finally, at the time when this report was written, the validation of our approach was based on deployments

using the docker-compose utility and the testing was performed locally. For the last period of the project,

we will provide docker images available through the INFINITECH marketplace and blueprints so that an

integrated solution that uses our Intelligent Data Pipelines can be deployed using the INFINITECH way for

deployments.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 39 of 44

6 Parallized Data Stream Processing using Apache
Flink and Kubernetes

In this section we will discuss the second main innovation that will be developed as part of T3.4, namely
dynamically scalable stream query processing in distributed query processing environments. More
precisely, we first state the motivation and business needs that our work will solve, the problem definition
and finally, we give details of the overall design of the system using Apache Flink and Kubernetes. With our
design, three key innovations are required to be achieved and we give a more detailed description of the
overall system covering all three of them.

6.1 Motivation
In the finance domain, there are a wide range of use-cases that require real-time processing of data
streams to add value. For instance, when performing financial trading for currencies or stocks, it is critical
to be able to monitor price fluctuations in real-time to identify buy/sell opportunities. Moreover, as the
application of alternative information streams such as news articles and social media become more
popular, large volumes of specialist compute resources are needed to enable real-time language analytics.
However, a key feature of financial data is that the rate at which it arrives at is not constant. Over the
course of each day the number of financial trades can fluctuate wildly, and moreover can experience bursts
of activity when the market becomes aware of some new information. Indeed, in today’s trading
environments, the severity of trade burstiness is exacerbated by automatic trading algorithms that use
other buy/sell transactions as triggers for their own trades. As a result of these factors, to enable consistent
processing of financial data streams with low latencies the underlying infrastructure needs to be elastic to
rapid changes in input rate/velocity.

However, elasticity is not a feature currently supported by stream processing platforms such as Apache
Flink or Spark. More precisely, such platforms provide what we will refer to as cluster scalability, i.e.
compute resources in the form of worker nodes can be dynamically added or removed from the cluster,
allowing the total resources available in the cluster to be altered in real-time. On the other hand, the actual
stream processing pipeline(s) deployed on the cluster are static, i.e. once configured the resources
allocated to them are fixed. Hence, from a practical perspective, these stream processing platforms can’t
easily tackle data streams with large fluctuations in rate/velocity effectively out-of-the-box.

Instead, what we would want is a platform that provides both cluster scalability and dynamic compute
pipelines, where the development of such a platform is one of the aims of T3.4.

6.2 Problem Definition
To formalize the problem being investigated, we are considering stateful multi-operator stream processing
applications over bursty data streams, such as currency trading or financial analytics. To clarify the
terminology:

• Stream Processing: Data points needing processed will arrive over time and need to be processed
as quickly as possible as they are used by down-stream components (e.g. user-facing interfaces or
machine learned models).

• Stateful: One or more operators within the pipeline accumulate state over time that forms a part
of the computation performed by those operators. This state needs to be transferred to new
instances of that operator during scaling.

• Multi-Operator: The pipelines can contain multiple data map, reduce or transformation operations
with different performance characteristics.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 40 of 44

• Bursty Data Stream: The number of data points that arrive on the stream can rapidly vary across
different time periods (e.g. by multiple standard deviations).

6.3 System Design
To solve this challenge, the Apache Flink query processing system developed as part of T3.3 and enhanced
to enable intelligent data pipelines as described in the previous section, will be further extended to enable
dynamic compute pipeline scaling. The core concept for this system is as follows. Given a point in time t, an
alert is fired indicating that a pipeline (A) will soon be unable to maintain low processing latencies for a
given input stream due to increased load. First, a Flink cluster with more resources will be allocated from
the Kubernetes cluster and a new pipeline B will be initalized on it. This pipeline will not receive traffic until
pipeline A hits its next checkpoint. When pipeline A receives its next checkpoint the flink source for pipeline
A will be disabled, allowing for pipeline A to drain. As the snapshots from each operator are written to the
persistent store, pipeline B reads and uses that data to initialize its own operators. Once all operators in
pipeline B are initialized then the source for pipeline B is enabled, completing the move between pipelines.
At this point pipeline A and its associated resources will be freed on the Kubernetes cluster.

There are three primary innovations required to achieve the above process flow, namely: 1) enabling
operator state save/load on demand between replica sets of different sizes; 2) programmatic scaling of
Flink clusters on Kubernetes and 3) pipeline configuration transition between clusters. We summarize each
on more detail below:

6.3.1 Operator State Saving and Loading

Recent versions of Apache Flink already support checkpointing of operator states via asynchronous barriers
on the input stream. Under this model, a central coordinator periodically injects barriers into the data
stream, where a barrier represents a point in the stream to effectively take a ‘snapshot’ of the pipeline.
When an operator receives a barrier event, it takes a snapshot of its current state and writes that to a
persistent store. If an operator has multiple inputs, it waits/blocks until it receives the barrier from all
inputs. This structure assures that the checkpoint meets termination (a complete snapshot will be
produced eventually for each input barrier) and feasibility (the snapshot will only include information up-to
the barrier) guarantees. This effectively solves the state saving problem, so long as checkpointing is enabled
and the snapshots are being written to a secure store then we can recover the state of each operator for
different points in the stream.

However, checkpointing within Flink is designed to recover from pipeline failures (e.g. due to a machine
failure), not to enable transfer of processing from a low-capacity pipeline to a higher-capacity pipeline. As
such, we need to implement a new operator initialization function that enables operators spawned in a
new cluster to load state snapshots from equivalent operators in a different existing pipeline. The challenge
here is that since different instances of an operator may have distinct state (e.g. because they are
processing different subsets of the stream), the load operator needs to understand how partitioning of the
stream was performed initially to correctly set state for the new operator instances that use a different
partitioning. To explain with reference to Figure 5, if we are transitioning from pipeline A to pipeline B, then
for operator 1 the transfer is quite simple, as we simply need to replicate the state from operator 1 in
pipeline A to both copies of that operator in pipeline B. However, for operator 2, we move from having two
instances (with different states) to three instances, and hence some processing on the instance states
needs to be performed to assure that the three new instances in pipeline B have the needed/correct state
to function over their new partition of the input stream.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 41 of 44

Figure 5: Pipeline Transition Diagram

6.3.2 Programmatic Scaling of Flink Clusters

The second main innovation needed to support scaling of stateful multi-operator Flink applications is the
programmatic scaling of the underlying Flink Cluster. Under our core design, we do not scale an existing
Flink cluster (although this is possible), but instead allocate a new cluster from first principles with the
desired resources, followed by the deletion of the previous cluster when its no longer needed. To achieve
this, a separate microservice will be built to facilitate this using the Kubernetes Operator Pattern.
Kubernetes Operators are in effect software extensions to Kubernetes to enable automatic management of
particular applications and their components. In this case, a Kubernetes operator needs to be developed
that is able to:

• Construct docker images encoding a processing pipeline

• Create and configure a new Flink Cluster with a defined total resource allocation

• Delete an existing cluster without loosing the underlying checkpoints of that pipeline

A Kubernetes Operator is itself a separate containerized service with an API that allows functions to be
triggered. In this case, one function for each of the three pieces of desired functionality. The operator then
communicates with the underlying Kubernetes API to operationalize the changes needed on the physical
cluster infrastructure. For example, for our first function, this involves the launching of a Kubernetes Pod
that executes the Docker build process to construct and then upload a container image containing our Flink
compute pipeline to a docker image repository (which can be later used to produce a new Flink cluster pre-
loaded with the desired compute pipeline).

Figure 6: Flink Operator and Flink Cluster Creation

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 42 of 44

6.3.3 Pipeline Configuration Transition between Flink Clusters

The final innovation that is needed to enable scaling of stateful multi-operator Flink applications is a
controller service to both trigger and then manage the overall transfer between Flink pipelines. In effect,
this control service needs to provide the following functionality:

• Rule-based Predictive Pipeline Failure Identification: The ability to define a set of rules that take as
input a recent set of time-series metrics exported by a compute pipeline and identify whether that
pipeline needs to scale up or down. Internally, the service will regularly evaluate the different user-
defined rules to see if any are violated. If so, a pipeline transition will be started.

• Pipeline Creation: If a pipeline transition is triggered, then the first action the controller service
needs to perform is the creation of a new Flink cluster with appropriate resources. This is achieved
through communication with the Flink Operator service defined in Section 6.3.2. Note that this
operation may take some time, and so this process needs to block until the operator reports the
pipeline is in a running state.

• Data Stream Redirection: Once the new pipeline is operational, the data stream needs to be re-
directed to the new processing pipeline.

• Pipeline Deletion: The final step in performing a transition between pipelines is removing the
previous pipeline, via communication with the Flink Operator service defined in Section 6.3.2.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 43 of 44

7 Conclusions and next steps
This document reported the work that has been done in the scope of task T3.4 “Automated Parallelization
of Data Streams and Intelligent Data Pipelining”, whose objective is twofold. First, to provide the enablers
for deploying intelligent data pipelining, thus having what we call the INFINITECH approach for intelligent
data pipelines. This will provide a holistic solution that addresses all problems that currently appear in
different architectural designs used in the modern landscape. The base will be the innovations brought by
the data management layer of INFINITECH, which solves the problem of data ingestion in very high rates,
removing the need for database offloading, along with the online aggregates of the declarative real-time
analytical framework of INFINITECH. This removes all issues having to pre-calculate the results of complex
analytical queries, which leads to inconsistent and obsolete results. The integration of INFINISTORE with
Apache Flink, as part of the work being currently done under the scope of T3.3 “Integrated Querying of
Streaming Data and Data at Rest” and the integration with tools for Change Data Capture (CDC) that will
done under the scope of this task, will enable the deployment of such intelligent data pipelines.

The second objective of task T3.4 is to provide the means for enabling automated parallelization of data
streams, allowing to dynamically scale out individual operators that formulate a data stream in order to
cope with diverse incoming workloads. Current solutions allow static deployments of stateful multiple
operators, but once deployed, they cannot be scaled out. Our design allows operators to save and load
their state, which allows to shutdown existing deployments and redeploy them increasing their instances,
while transmitting the state of the formers to the new ones. The use of Kubernetes as the underlying
container-orchestration system for automated deployments allows to programmatically scale the Apache
Flink clusters and our novel operators allow to the configuration of the transmission of the state across
those clusters.

At the first phase of the project, the main focus was given in implementing and delivering the baseline
technologies that will create the innovation and break through the current barriers of modern
organizations that require real-time processing and analytics over multiple data sources (either static at-
rest or streaming and in-flight). That is the HTAP provision, which enables analytical query processing over
live operational data without the need to move snapshots of a dataset to a data warehouse, the capability
of the data management layer to allows for high rate data ingestion via its dual interface, its polyglot
extensions that allows query processing over federated datastores and finally, the online aggregates using
declarative scripting language, ensuring data consistency at the same time in terms of database
transactions. As all these technologies have been incorporated into the INFINISTORE, the integration of the
latter with Apache Flink as the baseline technology for the INFINITECH streaming processing framework
was the second necessity. The automation of its deployment using container-orchestration frameworks
now allows the automated parallelization of the data streams, which is the second target objective of this
task. The delivery of those fundamental pillars was the primary focus during the first phase of the project,
with the first prototypes being now already available.

Moreover, during this first phase of the project, an intensive analysis of the state-of-the-art of streaming
processing frameworks took place as well, allowing us to identify the current architectural designs of the
modern landscape, along with their inherit barriers. After conducting this analysis, we defined the vision of
the outcomes of this task, which gave valuable input to the rest of the tasks related with the data
management activities of INFINITECH and more precisely, T3.1, T3.2, T3.3 and T5.3. As these tasks have
been progressed and the first prototypes have been already delivered, we are now in a position to start the
implementation of our holistic solution in what we call the INFINITECH approach for intelligent data
pipelines. Additionally, a thorough analysis on how the innovations developed so far will solve all
aforementioned barriers of current architectural decisions have been provided. Moreover, the initial design
on how to allow the automated parallelization of data streams has been included in this report. Our design
allows to dynamically scale out individual operators of the data stream, transferring the current state of the
deployed Flink cluster to the new ones, thus, removing the barrier of having to rely on static deployments
that cannot cope with diverse workloads in real time.

D3.10 – Automatic Parallelization of Data Streams and Intelligent Pipelining - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 44 of 44

Having the basic pillars and design in place, during the second phase of the project task T4.3, we provided a
first implementation of our INFINITECH Data Pipelines. We validated our approach by using the change
data capture paradigm to transparently move data from external datastores that can be considered as
sources to the INFINISTORE. We utilized a commonly used commercial operational datastore as the source
and we setup and deployed the intelligent data pipeline so that data ingested in the operational data store
can be stored and retrieved from the INFINISTORE. That way, we allow the data analysts and application
developers to benefit from exploiting the innovations developed within INFINITECH and integrated into its
data management system, in order to avoid the need for hybrid and complex architectures. As we saw from
our analysis, to maintain such architectures that involve numerous and heterogeneous database systems
can be a hard task while on the same time, all different approaches come with their inherit drawbacks and
technological obstacles. In the final phase of the project, we will validate a data pipeline whose source will
be the INFINISTORE itself and the target other data management systems. This is planned to be exploited
by the integration of the Semantic Interoperability Engine of INFINITECH with the INFINISTORE, as
explained in section 5. Finally, during the last phase, more details along with additional demonstrators will
be given regarding the automation of parallelized data streams and how our implementation can scale out
the streaming nodes in real-time by storing and replicating their internal state.

