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Executive Summary 
The goal of task T3.1 “Framework for Seamless Data Management and HTAP” is to provide a seamless way 
for data management across operational and analytical data stores by supporting Hybrid Transactional and 
Analytical Processing (HTAP). The importance of this task is summarized in the elimination of the need to 
build and maintain different types of datastores that support the two different workloads: operational and 
analytical. Traditional database management systems can provide support to either the operational or the 
analytical workload but underperform when a hybrid load should be served. Due to this, data often is moved 
from the operational datastores that ensure transactional semantics to the analytical database management 
systems, which allow for read-only operations; however, they cannot support transactions, and therefore, 
write operations. Moving data from one store to the other is done by a process called ETL (extract, 
transform, and load), which can prove costly and time-consuming. Another drawback is that this is a batch 
process, often taking place during the night where the operational workload is very low, that ends up with 
having multiple copies of the dataset across the different datastores (the operational one, and the data 
warehouse). Moreover, the analytical queries take into account old and obsolete data from the last day, and 
therefore, the results of the analytical processing cannot rely on live data that were generated and inserted 
in real-time.  

In order to overcome the above obstacles, we have implemented HTAP at the data management layer of the 
INFINITECH platform, in order to provide a seamless way to access data coming from both worlds: 
operational data with historical data that have been stored in a data warehouse. Having a single data 
platform that can handle both workloads is crucial for applications and analytical processing needed by the 
finance and insurance sector, as it is getting more important than ever to address the need to provide real-
time business intelligence that relies on live data, and the key element to provide this is the support of 
hybrid data workloads on the same dataset: both operational and analytical ones.  

This deliverable describes the INFINITECH HTAP design and implementation. We call this the INFINISTORE. In 
this final phase of the task, the transactional behavior of the data management layer already supports the 
concept of the snapshot isolation paradigm, which is the key to allow both operational and analytical 
processing. Having done this, the HTAP can be feasible from the INFINITECH platform. Moreover, the basic 
architectural design of the OLAP engine of the platform has been delivered, which will allow the effective 
execution of analytical queries in order to compete with the performance of traditional data warehouses. 
Additionally, we provide a dual SQL/NoSQL interface that allows for data ingestion at very high rates, while 
keeping consistent with the SQL semantics at the same time. Finally, we have implemented a custom 
connector for the Apache Kafka queue, which allows for inserting data coming from a data stream 
transparently to the INFINISTORE, making use of its dual SQL/NoSQL interface and its ability for HTAP 
support. This task is the fundamental pillar of all other tasks related to the data management activities of the 
INFINITECH project, and therefore, a big effort was spent on this during its first and second phases. During 
this third phase of this task, additional effort was spent on the adaptation of the INFINISTORE in the pilot use 
cases. This support for pilot adaptation will continue during the remaining phases of the project; in the final 
version of the document which is due in M27, examples of its use will be given. 
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1 Introduction 
This deliverable summarizes the work that has been done in the scope of task T3.1 “Framework for Seamless 
Data Management and HTAP” during its third and last phase (M27). The goal of this task is to provide a 
seamless way to access data sets that are usually stored in operational database management systems and 
data warehouses, by eliminating the need to support and maintain both types of datastores and having all 
data kept in a single platform. By doing this, the data will be stored once, instead of having multiple copies of 
the data elements being kept across the different datastores. Moreover, it will be feasible for the analytical 
processing to scan and take account of live data, instead of performing the analytics on a snapshot of the 
dataset, as it has been imported to the data warehouse from the last periodic execution of the batch ETL 
(extract, transform, and load) process that copies data from the operational store to the data warehouse. By 
doing so, real-time business intelligence (which is becoming crucial for various cases coming from the 
insurance and finance sector and are addressed by the INFINITECH platform) can become an operational 
option.  

Operational database management systems ensure transactional semantics, which means that they support 
ACID properties. They enable atomic execution of a series of operations inside a transaction (the A in those 
properties), which means they will be either executed all or none. They ensure data consistency (the C in the 
properties), which means that they will leave the database in a consistent state after a transition from one 
state to another, which is being done after a data modification operation. They allow for the isolation of 
transactions (the I in the ACID) which implies that the result of the concurrent execution of a number of 
transactions will be equivalent to their being executed as isolated events, one after the other. Finally, they 
ensure the durability of the dataset (the D in the ACID properties) which implies that the dataset will be 
durable and can be recovered in a case of failure, after the successful commitment of a given transaction. In 
order to support the isolation property, traditional database management systems often make use of a two-
phase locking mechanism. This mechanism introduces shared and exclusive locks while accessing a data 
element. When an operational transaction is being executed, a data modification operation on a data 
element (e.g. update the current balance of a client account) is performed, which introduces an exclusive 
lock on that element. Exclusive locks forbid concurrent operations from accessing that element. Therefore, 
when the data analyst wants to check the overall balance of a client to recommend a new product, this 
operation will be blocked until the former transaction is committed successfully. As a result, analytical 
workloads that need to fully scan a dataset are being blocked by the operational loads that are crucial for a 
financial institution to ensure the consistency of the financial transactions of their clients.  

As online financial transactions are being executed daily, it is crucial to ensure data consistency and isolation 
when these transactions are being performed in parallel. To give an example, when the end-user makes a 
money transfer, it should be ensured that there is enough balance on her account to perform this task. 
Operational database management systems provide this type of assurance, often by introducing some type 
of locking mechanism on the data elements that are being updated, with the cost of losing performance in 
cases of analytical processing. The latter often requires the full scan of a given dataset, which is blocked by 
the various locks imposed by the operational processing. In order to overcome this, the data administrators 
perform periodically some types of ETLs that migrate data from the operational datastores to the data 
warehouses. The latter support read-only operations, and therefore, allow for a full scan of a dataset, 
without being blocked by concurrent data modification operations. However, they rely on a snapshot of the 
dataset of the previous day, or from the last execution of this periodic batch migration, which can be 
inadequate in cases where there is the need to produce results in real-time. This is the case for the online 
identification of fraud behavior. The analysis needs to take place on the live data, as they are inserted into 
the system to make the identification useful for performing an immediate action. Another example will be 
the risk assessment of a possible recommendation that may need to take into account data from the current 
day, and not to rely on a previous out-of-date snapshot that might result in erroneous cost estimations. 
Analytical processing from an insurance organization might also need to take into account sensor IoT data as 
they are inserted into the system, rather than wait for the data to be injected into a data warehouse for 
further processing. 
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As has been already mentioned, in order to overcome this problem, data is being migrated periodically to a 
data warehouse, which supports analytical processing, as it does not lock data elements. Data are being 
migrated to the warehouse usually during the night, where insurance institutions usually experience very low 
operational traffic, and therefore, it is feasible to block all those operations for a certain period, while 
moving data from a storage to the warehouse. This block/downtime would be unacceptable to be executed 
by day, as it would block the whole organization. Apart from copying data into multiple destinations, the 
additional obvious result of this migration process, often called ETL, is that it has to be executed periodically 
during the night, thus, the data analyst can rely only on a snapshot of the dataset of the previous day. The 
drawback of this approach is that it can only support near real-time business intelligence (BI), which is mostly 
accepted in the majority of the use cases. However, the scope of the INFINITECH project is to provide real-
time BI and therefore task T3.1 supports Hybrid Transactional and Analytical Processing (HTAP) that is crucial 
to meet the needs of the modern enterprises from the insurance and finance sectors. 

 

1.1. Objective of the Deliverable 
The objective of this deliverable is to report the work that has been done in the context of task T3.1 in this 
last phase of the project (M27). Prior to M27, this task has already been reported 2 times (in M11 and M19), 
extending and modifying, when necessary, the initial content of this document, following the agile approach 
for system development and in order to update the solution and implementation with the current trends of 
the environment as the project progresses. The work that has been done during T3.1 (M03-M27) was mainly 
focused on the delivery of the core transactional component of the data management layer of the 
INFINITECH platform, which enables seamless data access over the HTAP workloads. Instead of using 
traditional two-phase locking implementations to ensure the ACID properties, our implementation makes 
use of the snapshot isolation paradigm, which will be explained in more detail in section 2.3 and avoids 
locking and therefore allows for i) the scalability of the transactions that can now support hundreds of 
millions of concurrent operations, and for ii) the concurrent execution of read-only operations over the same 
dataset, which is used by the analytical tools. In addition, an overview of the OLAP (Online Analytical 
Processing) engine of the data management layer of the platform is being presented.  

According to the project work plan, in the second period, the HTAP engine of the INFINITECH platform had 
been validated against various use cases that need this capability. Towards this direction, the second version 
of the deliverable included the description of its dual SQL/NoSQL interface used by many pilots, while we 
have reported and included our newly developed Apache Kafka connector, along with a corresponding 
demonstrator based on the needs of pilot#2 of the project. This task has achieved all its primary goals and 
objectives for the post-M18 period, as this was necessary for all other tasks of the project related to the data 
management activities, and therefore, the main focus during the last phase was the adaptation to suit the 
pilot use cases. As pilot adaptation is an ongoing process that will last until the end of the project, in this 
deliverable, there will be noted the adaptation of the pilots that are mature enough at the time when this 
report was written (M27).  

 

1.2. Insights from other Tasks and Deliverables 
The work that is reported in this deliverable is based on the overview description of the corresponding task 
T3.1, which has been further specified in more detail at the WP2 level, which is the fundamental work 
package that defines the overall requirements for the whole platform. In more detail, task T2.3 comes with 
the specification of the technologies that the overall platform of INFINITECH provides, and specifies the 
technical requirements that need to be covered by the technical tasks of the WP3-4-5-6 work packages. Task 
T2.5 additionally provides the definition of the various datasets that the overall data management layer must 
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support and must be taken into account by this task that implements the core engine of this layer. 
Moreover, the Reference Architecture (RA) of INFINITECH is defined in T2.7 and the work that is being done 
in the scope of this task must fit into the whole design. Therefore, as a technical task, T3.1 has clear 
dependencies with T2.7. Finally, T3.1 takes inputs from the whole WP7 where the definition of all use cases 
takes place. On the other hand, as T3.1 implements the fundamental core of the overall data management 
component, it is related to the majority of the other technical tasks. More precisely, it gives output to T3.2 
which is related to the polyglot extensions that access data in real-time through this layer. Tasks T3.3 and 
T3.4 need to correlate streaming data with the data-at-rest, therefore the HTAP capabilities are crucial when 
having to perform real-time stream processing and combine these two different types of data. Moreover, 
T5.1 collects data and ingests them into the platform, therefore the scalability of the transactional 
processing of T3.1 comes in place, while the remaining tasks T5.2, T5.3 and T5.4 are related to tools for 
analytical processing that need to consume real data, underpinned by the HTAP capabilities developed here. 

 

1.3. Structure 
This document is structured as follows: Section Error! Reference source not found. introduces the 
document, putting the work reported in this deliverable under the context of the project, highlighting its 
relation with other tasks of the DoA. Section Error! Reference source not found. provides the fundamental 
theory and explanation regarding how we make the Hybrid Transactional and Analytical Processing feasible. 
Section Error! Reference source not found. describes how the transactional processing is being implemented 
in the scope of the INFINITECH platform, that enables both the scalability of the data modification operations 
while ensuring the transactional semantics, which is crucial when we need to deal with real-time data, 
instead of putting them into a queue and periodically batch-importing them to the datastore, while section 
Error! Reference source not found. presents the overall design of the OLAP engine. In this second version, 
we have now added section Error! Reference source not found. that explains how the INFINISTORE allows 
for linear scalability that boosts the overall performance, while other data management systems of different 
vendors fail. The newly added section Error! Reference source not found. provides details on the dual 
SQL/NoSQL interface of INFINISTORE, while we also included section Error! Reference source not found. 
which describes the implementation of the Kafka connector to the latter. This was driven by the needs of 
several user scenarios of different pilots of the project that shared the same need for ingesting data into the 
sandbox from external data streams. A demonstrator has been also provided in this section to be used as a 
guideline for all cases that share this common need. 

For this last phase of the project, a new section 8 has been added that can be used as a demonstrator for the 
configuration, deployment and usability of the data management layer, using the “INFINITECH WAY” of 
deployments. Additional subsections have been provided by the most mature pilots to showcase their 
adaptation with the INFINISTORE.  

Finally, section 9 concludes the document.  
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2 Making Hybrid Transactional and Analytical 
Processing Feasible 

A crucial requirement for the majority of the applications and processing coming from the insurance and 
finance sector is to ensure transactional processing, meaning that the operational workload must ensure the 
ACID (Atomicity, Consistency, Isolation and Durability) properties are respected. The concept of a database 
transaction ensures those properties for the lifecycle of the transaction. Transactions are a very important 
abstraction in developing applications since they remove the complexity of difficult concepts from the 
application layer, down to the database. When dealing with concurrency, users do not need to take care of 
the concurrency control needed when developing applications and software components that need to 
bracket the access to shared data. In fact, it is the corresponding implementation of the protocols in the 
database level that ensures the corresponding isolation property and takes care of the details of concurrent 
access. Secondly, software developers do not have to deal with failures, as atomicity and durability protocols 
provide automated recovery in the advent of failures yielding all-or-nothing semantics. As a result, the ACID 
properties simplify the task of programmers. 

In this chapter, we focus on the isolation property and how different levels of isolation of concurrent 
transactions affect the results of a query when being executed in parallel. The different implementations of 
the management of concurrent transactions in order to obtain the defined isolation level, affect the ability of 
the data management layer to provide hybrid transactional and analytical processing. We give an overview 
of the different isolation levels first, in order for the viewer to deeply understand the problem, along with 
the corresponding read phenomena that are subject to each level. Then, we describe how these are 
achieved by the two dominant approaches that are implemented by traditional database management 
systems: the two-phase locking approach and the snapshot isolation paradigms, which will be explained in 
the following subsections. 

 

2.1 Isolation Levels and Read Phenomena 
In database theory, the term isolation defines the visibility of data elements to concurrent transactions and if 
a user transaction can modify an element that has been previously accessed by a concurrent one, or has the 
visibility of a data modification that another concurrent transaction has performed. To give an example, a 
user wants to perform a money transfer from one of her accounts to another, while at the same time she 
tries to buy a market product that will imply the invocation of a financial transaction from one of her 
accounts to buy this new product. Those two transactions try to access the same data element (the value of 
her account that has been written and persistently stored in a database management system), however it is 
up to the level of isolation to decide whether or not both of them can perform the operation. 

Typically, lower isolation levels increase the ability of many concurrent transactions to access the shared 
data. However, the lower the level of isolation, the more important the read phenomena that are allowed to 
happen, in terms of data constistency. In our previous example, a money transfer from one of the user’s 
accounts to the other might leave her primary bank account with no money. While executing the finance 
transaction to buy a new product at the same time, if the isolation level is low enough, it might be possible 
that this transaction will have the visibility of the old value of the bank account, and therefore, perform the 
transaction to buy the product, while in reality, the amount of the required money has been already moved 
to the new account. These types of concurrent operations are most likely found in typical applications of the 
finance and insurance sectors and require a higher level of isolation. As it has been already stated, the higher 
the level of isolation is, the lower the level of concurrent access. To make things worse, in many cases, it 
might be impossible for an analytical operation to be executed when the level of isolation is very high, which 
is a requirement for financial institutions. This explains the need to migrate data periodically to data 
warehouses that grant exclusively read-only operations where transactional semantics are not imposed.  
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Typical isolation levels are the following: 

• Read Uncommitted: An ongoing transaction can read the modified value of a data element that has been 
recently modified by a concurrent transaction that has not yet been committed. This is the lower level of 
isolation which provides no assurances that the value that the first transaction read will be valid at the end of 
its lifecycle. It can be used in cases where the validation of the data is not a priority, rather than the level of 
concurrency. 

• Read Committed: This is the default isolation level supported by the majority of operational datastores. It 
ensures a minimum consistency of the data that are being concurrently accessed and covers the majority of 
the use cases. It allows for a transaction to read the value of a data element when a concurrent transaction 
that has previously modified its value is now committed. It usually forces the read operation to be blocked 
until the concurrent one is successfully committed. However, it allows for some read phenomena that are 
unacceptable for the finance sector. 

• Repeatable Reads: In this isolation level, the concurrency control mechanism ensures the validation of the 
value that has been read once during the whole lifecycle of the transaction. It forbids any concurrent 
transaction from modifying the value of a data element that has been previously read by an ongoing 
transaction. This will usually require the lock of that data element that reduces the level of concurrency and as 
a result, downgrades the overall performance. 

• Serializable: This is the highest isolation level and ensures that concurrent transactions are being executed in 
the order they occurred, rather than in parallel. In most applications of the insurance and finance sector, this is 
the required level of isolation that must be ensured by the data management level. However, this implies that 
instead of concurrent execution of transactions, they will be executed sequentially. 

As has been noted, each of the aforementioned isolation levels allows for different read phenomena. Let’s 
examine them per level. 

 

Dirty Reads 

These phenomena can occur under the read uncommitted isolation level. The following diagram highlights 
the phenomenon. 

 

Figure 1: Phenomena: Dirty Reads 

 

An ongoing transaction T1 reads a data element X while a concurrent transaction T2 writes the value on the 
same data element X. T1 now reads again the value of X that has been modified to its new value 7. However, 
T2 aborts and T1 has read a dirty value 7 for the data element X. This can have a crucial effect in a financial 
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organization when T2 moves money from one account to another, and T1 performs a financial transaction in 
order to buy a product. It assumes that the bank account of the user has value 7 which might be enough to 
perform the financial transaction, but this is not true, as T2 fails and the user’s account has in fact value 5, 
which is not enough to buy the product. As we will see in the next subsection, this can be solved by putting 
exclusive-write locks on the modified data elements. 

 

 

Non Repeatable Reads 

These phenomena can occur under the read committed isolation level. The following diagram highlights the 
phenomenon. 

 

 

Figure 2: Phenomena: Non repeatable or fuzzy reads 

 

An ongoing transaction T1 reads a data element X while a concurrent transaction T2 writes the value on the 
same data element X. T1 now tries to read again the value of X that has been modified to its new value 7. 
However, under this isolation level, it has to wait until T2 firstly successfully commits. This ensures that the 
value that T2 will read is valid, and therefore the check whether the user has enough money on her bank 
account to perform the financial transaction. Even if this improves the phenomenon that was noticed with 
the read uncommitted isolation level, it still has a severe implication when it comes to operations related to 
the finance and insurance sector. T1 initially read the value of the data element that was 5, and when it tried 
to read it again, it has been changed to 7. As a result, it does not allow for repeatable reads in the same 
transaction. Taken into account that the operations inside a transaction must be atomic, which means they 
either need to be executed all or none, they also need to have the same visibility on the same data items. 
This might have severe implications when, for instance, the financial institution starts a transaction that 
firstly reads the value of the account of the user to decide whether or not she is allowed to perform the 
financial operation. It might need to do this at the beginning in order to avoid cost-demanding write 
operations afterwards. However, in the meantime, T2 has modified the value of its account, and when it 
actually performs the operation, it reads a different value that is not consistent in the scope of T1. As we will 
see in the next subsection, this can be solved by putting exclusive write locks on the modified data elements, 
along with shared read locks on the elements that have been accessed by a read operation.  
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Phantom Reads 

These phenomena can occur under the repeatable read isolation level. The following diagram highlights the 
phenomenon. 

 

Figure 3: Phenomena: Phantom reads 

 

These phenomena occur when we have transactions that require scan operations on a dataset. In our 
example, an ongoing transaction performs a scan operation to return the data elements whose field age is 
between the values 10 and 30. A concurrent transaction however inserts a new data element whose age 
value is 27 and commits. When T1 will execute the same query, it will return a different result set, as a 
phantom record has been added in the meantime. This might be important in financial operations that 
calculate for instance the overall spending of a client, by calculating the cost value of all her transactions 
during the last week. That might be meaningful for a fraud detection mechanism. However, if in the 
meantime, the user performs a massive money transfer, the result of two sequentially executions of the 
statement inside the lifecycle of T1 will be invalid. As we will see in the next subsection, this can be solved by 
putting range locks that will forbid a concurrent transaction to insert a new value inside this range. However, 
this can be very ineffective and might typically require the construction of a new index on a specific field and 
possibly, the lock of the entire table during the execution of the scan operation, that will have a side effect 
on the entire block of write operations that need to access this dataset. In order to overcome this, the data 
administrator migrates data on a data warehouse and performs these types of read operations there, with 
the drawbacks that have been mentioned in the previous sections. 

 

2.2 Two-Phase Locking 
Traditional operational database management systems make extensive use of the two-phase locking 
mechanism in order to ensure the different isolation levels. It is a concurrency control mechanism that 
makes use of different types of locks on data elements, thus blocking an ongoing transaction from accessing 
a shared data element that a concurrent one has previously accessed. The details of the implementation of 
this mechanism are out of the scope of this document, but it is important to mention that it involves two 
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phases: the first one where the locks are acquired while accessing the data, and the second one where the 
locks are released while the transaction is committed. There are several variations on the protocol, but all 
share the same concept: the introduction of locks on data elements that can be of two types:  

• Shared or read locks: this is added when a transaction is trying to access a data element to perform a read 
operation. 

• Exclusive or write locks: this is added when a transaction is trying to access a data element to perform a data 
modification operation. 

An exclusive lock prevents all other operations to access the specific data element until the lock is released. 
This means that when modifying a data element, no other read or write operation can be performed. This 
prevents write-write and write-conflicts to happen. On the other side, a shared lock only forbids a write 
operation to access a data element, thus preventing a read-write conflict. However, other read operations 
are permitted to access the data element and in fact, read-read operations are allowed as there cannot be 
conflicts.   

In the scope of the different levels of isolation, these locks can help achieve the desired level. Dirty readings 
phenomena can be avoided by introducing an exclusive lock on the data element that has been modified. By 
doing so, a concurrent read operation T2 is not allowed to access the previously modified data, as the 
exclusive lock blocks its access. It has to wait to either the ongoing transaction commits or aborts, which will 
have the consequence of releasing the corresponding lock. At that time, the concurrent transaction T2 will 
be allowed to access the data element, and according to Figure 1 it will read either the value 7, if T1 has 
committed, or the value 5, if T1 has been aborted. In any case, the exclusive lock prevents the dirty reads 
phenomena and allows for a concurrent transaction to always read a valid value.  

In cases of non-repeatable reads phenomena, they can be prevented by the use of shared locks. According to 
Figure 2, the ongoing transaction T1 accesses a data element X and locks it with a shared lock. This will 
prevent the T2 to modify its value and as a result, T1 will later read the same value 5 as previously. When T2 
commits, it releases its locks and T2 can now modify the value of the data element X. It is important to notice 
that in the case of a concurrent transaction T3 that wants to read data element X, this will be feasible and 
will read the value 5, as T2 is still blocked by the lock added by T1, and shared locks do not block read 
operations.  

In cases of phantom reads phenomena, a similar mechanism is also applied. However, according to Figure 3, 
a list of shared locks is being applied in the range that affects the read operation. It is true that if a shared 
lock is being applied to each of the accessed values, this will still permit a concurrent T2 transaction to insert 
a new data element, as this element will not have been previously locked by T1. In that case, T1 will receive a 
different result set with a phantom element added by T2. In order to prevent this, a scan operation adds 
shared locks to a range of values, preventing all concurrent operations from modifying and inserting 
elements in this range. According to the type of field that needs to be scanned and the implementation of 
the corresponding database management system (e.g. locking on the data element level, locking on the leaf 
of the corresponding index, locking on the data table level, etc.) this can block the entire operational 
workloads that need to access a specific table.  

Even if the corresponding isolation level can be achieved by the use of shared and exclusive locks introduced 
by the two-phase locking concurrency control, it also introduces two significant inheritance obstacles: the 
maintenance of the locks requires a central component that orchestrates the whole process and coordinates 
the distribution of locks across different data shards in a distributed deployment. As this component is 
central, it cannot scale adequately and becomes a bottleneck when there is the need to scale out the 
database to multiple nodes. In fact, most of the traditional database management systems can scale out to a 
certain degree as the improvement of the performance of the overall system reaches its peak and starts to 
be downgraded. Moreover, the use of range locks for scan operations that are required by the analytical 
processing further blocks all write operations on these datasets, reducing the performance of the whole 
application or completely blocking its operation if a data analyst tries to make an analysis of the live data. As 
has been noted, shared and exclusive locks are contradictory and in fact, analytical workloads adding shared 
locks compete with the operational workloads adding exclusive locks. This prevents HTAP from happening 
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and therefore, the data administrators make use of expensive ETLs to move the operational data periodically 
to a data warehouse that allows read-only operations without locking.  

As the INFINITECH data management component needs to provide HTAP capabilities, it will rely on a novel 
and recently used paradigm that follows a different approach, which is called snapshot isolation and allows 
for the concurrent existence of both loads, as it removes the need for locking and therefore, it never blocks 
transactions.  

 

2.3 Snapshot Isolation 
Snapshot isolation3 exists for quite a long time; however it became popular during the last decade where the 
need for scalability has increased due to the wider adoption of cloud applications. This requirement, 
combined with the need to continue to ensure transactional semantics made the traditional two phase-
locking mechanism inappropriate for distributed database management systems. Snapshot Isolation provides 
a very high isolation level due to the fact that transactions read from a snapshot of the database with the 
state, as it was when the transaction was started. To this end, this paradigm requires the use of multi-version 
concurrency control. By using this mechanism, instead of storing a single version of each data item, a new 
version is created when a transaction that updated the item commits. Therefore, for a single data item, 
multiple versions of it can exist at a given time. These versions need to be labelled in a way that enables 
them to choose the right version for a given transaction that tries to read a data item. Typically, logical 
timestamps are used for this labelling. 

In order to implement the snapshot isolation, a unique component is made responsible for distributing these 
logical timestamps. Transactions are assigned with those timestamps both when they start and when they 
commit. In order to understand how this protocol works, let’s look at Figure 4. 

 

Figure 4: Snapshot Isolation in practice 

 

 

Let’s assume that we have a central component responsible for distributing the logical timestamps. This 
component gives the current value of the timestamp when a transaction starts and increases this value when 

 
3 EuroSys '12: Proceedings of the 7th ACM european conference on Computer Systems, April 2012 Pages 155–168, 
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a transaction commits. Let’s assume that there is a data element X at snapshot 0 with value 5. Transaction T1 
starts at the timestamp 0 and gets assigned that value. Then it performs a write operation on the data 
element and modifies its value to 1. Assuming there are no write-write conflicts, it commits. At commit time, 
the timestamp distributor increases the value to 1, and assigns this value to T1. T1 marks the data element 
with this timestamp and stores its value. Now data element X has the old version at timestamp 0 with value 
5 and a new version at timestamp 1 whose value is 1.  

T2 now starts. It is assigned the current value of the timestamp which has been now forwarded to 1. It tries 
to read data element X. It will read the most recent version/snapshot of this data element according to its 
start timestamp. Data element X has two versions: 0 and 1. The most recent to timestamp 1 is the version 1, 
and therefore, it reads the corresponding value which is 1. It then modifies its value to 2 and it tries to 
commit. As there is no write-write conflict at that time, the distributor forwards the timestamp to 2, and 
assigns that value at commit time to T2, which in rounds, creates a new version/snapshot of that value, 
whose value at timestamp 2 will be 2. Therefore, now the data element has three versions: version0 with 
value 5, version1 with value1 and version2 with value 2. 

However, a concurrent transaction T3 has been already started before T2 commits. It will be assigned with 
that start timestamp of the current value, which at that point, was 1. Even if it is concurrent with T2, it will 
try to read data element X after T2 commits. As it has been assigned the timestamp 1, it will check for the 
latest version of the data element X before the timestamp it has.  Data element X now has 3 versions, and 
the latest one to timestamp 1 is the one whose timestamp 1 is one. Therefore, it will read the value 1 that 
corresponds to version 1 and not the value 2 which corresponds to version 2, which has been created after 
T3 started. As a result, there is no need to check for read-write or write-read conflicts. Later on, it will try to 
modify the value of that data element. Here, a write-write conflict will be identified, as the latest version of 
data element X now is 2, which comes afterthe start timestamp of T3 which is 1. T3 will have to abort. 

It is important to mention that even if snapshot isolation avoids all read-write conflicts including the 
aforementioned one between predicate reads and writes, it still forbids write-write conflicts. This solution 
requires checking those conflicts with some conflict management system. 

 

We can see from Figure 4 that the snapshot isolation paradigm makes no use of locking and therefore 
permits read operations to scan a dataset at the same time with the operational load which is taking place 
concurrently on the same dataset. Dirty and Non-Repeatable reads phenomena cannot happen as there is no 
need for read-write or write-read conflicts; the protocol itself ensures that each transaction will read the 
corresponding version of the data element. Phantom reads phenomena are also removed, as a repeatable 
scan operation will never see a phantom element added by a concurrent transaction, as the latter will always 
have a timestamp (and therefore a version) bigger than the progressing scan operation. It comes with the 
drawback of handling multiple versions of data items, however a garbage collector can be used that removes 
old and not accessible versions. The INFINITECH data management layer makes use of this paradigm in order 
to allow the Hybrid Transactional and Analytical Processing (HTAP) to be feasible. 
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3 Transactional Processing in INFINITECH 
 

The INFINITECH data management layer relies on the snapshot isolation paradigm in order to efficiently 
handle transactional processing. This gives us two benefits: firstly, by design, it allows for Hybrid 
Transactional and Operational Processing (HTAP) and secondly, it removes the bottleneck that is introduced 
by traditional two-phase locking mechanisms due to the maintenance of the locks across the distributed 
nodes. However, traditional implementations of the snapshot isolation tend not to scale out effectively, and 
thus, cannot support operational (OLTP) workloads at very high rates. With our design, the data 
management layer is capable of scaling out to hundreds of data nodes that allow the system to serve an 
operational workload in a very high rate. The following subsections provide more details regarding the 
implementation of our approach. 

 

3.1 Centralized Transactional processing 
A transaction can be seen as a sequence of read and write operations on data elements. It must ensure ACID 
properties, which means the transactional database management systems must provide atomicity, 
consistency, isolation and durability. As a result, when a transaction commits, all the data modifications are 
guaranteed to be durable. If this is not possible due to a commit failure or a write-write conflict in one of the 
involved operations, the transaction must abort and none of its updates should become visible to other 
transactions. As was mentioned in the previous section, the concurrency control mechanism that 
orchestrates the execution of concurrent transactions relies on snapshot isolation. 

In order to implement the snapshot isolation paradigm, we need to implement the corresponding Multi-
Version Concurrency Control (MVCC). In our implementation, each write operation wi(x¡) of transaction Ti on 
record x creates a new private version x, and each read operation ri(xj) of transaction Ti reads the latest 
version of x, xj created by a committed transaction Tj such that j<i and there is no other committed 
transaction Tz, such that j< z<i. Snapshot read requires that a transaction Ti reads a snapshot of the database 
that reflects the latest committed versions of all records as of start time of Ti. In particular, this means that if 
Ti performs a read ri on x, then it reads either the private version Ti previously created (read your own 
writes) or it reads the version xj created by Tj such that Tj was the last transaction to write x and commit 
before Ti started. Snapshot write requires that no two concurrent transactions (i.e., neither committed 
before the other started) update the same entity. If this happens, one of the two transactions will abort 
(typical strategies are either the first-committer-wins, or the first-updater-wins). As it was highlighted in the 
previous subsection, in case a transaction commits, then the current commit timestamp is increased and the 
private versions that correspond to the data modifications that the transaction has done are marked with 
this timestamp and then are sent to the datastore to be persistently stored. If the transaction fails and 
aborts for whatever reason, this private write-set is released. 

Figure 5 illustrates the interaction between the various components inside the data management layer of 
INFINITECH.Three major components are depicted: the data storage layer, the query processing layer that 
requests data from the data storage and the transactional management layer, that ensures the ACID 
properties and provides the transactional semantics needed by the operational workloads. In this simplified 
version of the implementation which is compatible with the logical processing of the data management 
platform itself, let’s assume that the query processing layer reads data from the data storage, performs the 
updates locally and creates the private write-set, and only writes data back to the data storage upon commit. 
Variations of this protocol can be also found, where the private write-set can be written in the data store 
layer but it is visible only to the corresponding transaction that has written it, unless the commit takes place 
where the visibility is guaranteed to all transactions.  



D3.3 – Hybrid Transactional/Analytics Processing for Finance and Insurance Applications - III 

H2020 – Project No. 856632   © INFINITECH Consortium           Page 20 of 76 

 

Figure 5: Centralized Transaction Processing 

 

Let’s assume that the current commit timestamp maintained by the transactional manager is TS=1. 

When a transaction Ti begins, it asks for this value. In case Ti it wants to perform a write operation; it has to 
ask the transaction manager to check if there are write-write conflicts with the corresponding data element. 
A conflict can occur if there is a concurrent transaction Tj, i.e., Tj has not committed yet or its commit 
timestamp is larger than Ti’s start timestamp (C(Tj) > S(Ti)), and Tj has written x. If there is no conflict, a 
private version of x is being maintained by the ongoing transaction and will be visible only to this, until 
commit time. If there is a conflict, according to the first-updater-wins approach, the on-going transaction 
must abort and release the private write-set. When a transaction Ti requests to read a record x, the data 
store has to provide the record created by transaction Tj with commit timestamp C(Tj), such that C(Tj) ≤ 
S(Ti), and there is no version of x created by a transaction Tk such that C(Tj) < C(Tk) < S(Ti). This provides the 
snapshot read property. 

Upon commit time, the transaction asks for the commit timestamp and the transactional manager has to 
increase the value of the current timestamp. In our example, this is being increased to 2. Moreover, the 
updates need to become durable, before making the private write-set visible to other transactions. The 
transaction will send the log of the updates to the transactional manager, and the latter persists this redo-log 
to a persistent storage. Only then does the transaction makes its private write-set public by persistently 
storing it to the data storage so that it can be accessible by other transactions. It is important to notice that 
the commit phase must be atomic, therefore the increment of the commit timestamp and the write of the 
private write-set to the datastore are tightly related; when updating the timestamp, new transactions must 
be able to have visibility to the modified records. This introduces the first bottleneck while having this 
approach as new transactions need to wait until the private write-set is persistently stored to the data store 
component. As this is a time-consuming process, the concurrent execution of transactions will be 
downgraded to sequential, as each transaction will have to wait for others to commit first.  
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Another drawback is that the transactional manager is a monolithic node performing different tasks, which 
might become a bottleneck in cases where there is a huge number of transactions that need to be served. 
The transactional manager is a centralized component and cannot scale out with the current approach. 
Having this central component perform all these different tasks might require a lot of resources and as a 
result, will saturate the resources of the node where it is deployed. We need to distribute the different tasks 
of this component in order to be in the condition of scaling them out independently and leave only the trivial 
ones that cannot be decentralized in a common node, but they will require a minimum amount of available 
resources. In the following section the approach of a distributed component is described. 

 

3.2 Decentralized Transactional processing in INFINITECH 
As it was clearly noted in the previous subsection, having a centralized component to handle the 
transactions gives us no benefits over the traditional database management systems that make use of the 
two-phase locking protocol. Both systems share the same bottleneck; scaling out the transactions. Even if 
the snapshot isolation gives us the ability to perform both OLAP operations on top of OLTP workloads sharing 
the same dataset, if the system cannot scale adequately, it will make evident the need to scale out and the 
proposed implementation will provide no benefits. In order to overcome this, INFINITECH provides a 
decentralized transactional processing mechanism that allows:  

• Scaling out to adapt to increased and diverse workloads 

• Being transparent to the application developer and data analyst  

• Providing adequate throughput scalability by allowing scaling out linearly  

• Minimizing the latency imposed by the commit of a transaction in order to support OLTP workloads and  

• Supporting the independent scaling of the other components of the data management layer: the data nodes and 
the query engine instances.  

The following subsections give more details on how the INFINITECH data management layer supports this, 
making it feasible to provide HTAP capabilities. 

 

3.2.1 Decoupling Update Visibility and Atomic Commit 

As stated before, an important limitation imposed by the traditional approach is the atomic commit phase, 
meaning that the commit timestamp has to be increased only when the private write-set is persistently 
stored in the data node, which is a costly operation and downgrades the level of concurrency. In the 
INFINITECH data management platform, we adopt a radically different approach, by holding two different 
types of timestamps: the commit timestamp and the snapshot timestamp. The former is used as usual: 
assigns the value to transactions that commit. The latter gives the value to the transaction, when it starts, 
called starting timestamp.  

As a result, the sequence of operations when a transaction Ti tries to commit is now the following: Ti 
receives the commit timestamp that is incremented, then it writes its private write-set to a redo log that is 
flushed to the persistent storage, in order to make the transaction durable, then it writes the new versions of 
the data to the data nodes, in order for them to become readable from forthcoming transactions, and then it 
informs the transactional manager to update the starting timestamp. The important thing to notice in this 
sequence of actions is that only the first must be atomic, which is trivial, as it only involves the increment of 
a counter. After this action, the logging can be postponed to be executed later, and it will only affect the 
current Ti transaction’s latency. By postponing the logging phase, it allows us to combine the logging of other 
transactions into one step, thus taking advantage of high throughput. After the logging phase, the 
transaction is now durable and in fact, we can return the control to the user, unblocking the execution of the 
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commit and performing the next 2 steps in a later phase. At that point, whatever happens, the system can 
recover as the durability property is ensured after the successful logging. This also means that the time we 
need to store the private snapshots of data to the data nodes does not affect the overall latency of the 
transaction, and this can allow the system to take advantage of other transactions and send this information 
all-in-once to the persistent storage. Only when the private snapshots are stored in the data nodes, the 
snapshot or start timestamp can be incremented, making them visible to forthcoming transactions. 
However, this delay does not affect the data consistency and is aligned with the transactional semantics. 

Given that the commit phase is not executed atomically though, there might be a case where two 
transactions are concurrent and try to commit. That is, T1 commits firstand takes a commit timestamp that is 
smaller than the one that T2 receives, however T2 private snapshots are stored earlier than T1’s ones and 
therefore, the snapshot server is informed to advance the corresponding timestamp to the value of T2. 
However, this means that T1 modifications must be visible by forthcoming transactions, which is not true as 
T1 has not stored its private versions of data yet. In order to overcome this, when the snapshot server 
receives a notification to increment the corresponding timestamp, it waits until all open transactions that 
have a commit timestamp prior to  the current one in its successful store of private versions, and then it 
increments the snapshot timestamp. Forthcoming transactions will always take the start timestamp that 
enables them to view data without losing consistency. 

The snapshot counter is not incremented by one each time a transaction completes its commit. It represents 
the longest coherent (i.e. gap-free) prefix of committed transactions. That is, if the snapshot counter is equal 
to the commit timestamp C (Tj) of transaction Tj this means that data versions created by Tj and all 
transactions with commit timestamp smaller than C (Tj) are durable, and readable from the data store 
(stored in the data store layer, but not necessarily persisted). 

Figure 6 shows the various phases of a transaction. When it starts, it receives the start timestamp from the 
snapshot server that provides its visibility over the data elements. That is, the transaction becomes active. 
When it is ready to commit, it sends a request to the transaction manager and the transaction itself becomes 
completed. When the logging phase is passed, then the transaction can be considered durable. After that, it 
sends the private versions to the data node, so that the transaction can become readable. After the 
notification to the snapshot server that the transaction is readable, the latter eventually increments the 
snapshot timestamp so that the transaction is now visible. 

 

 

Figure 6: Transaction phases 

 

 

In summary, the proposed solution that has been adopted by the INFINITECH data management layer is to 
process the commit phase of a transaction as a pipeline of independent tasks. That way, we can parallelize 
the commit processing that allows the overall system to scale to very high levels, instead of processing each 
commit atomically that would prevent us from parallelizing it and would impose us to process each commit 
sequentially. The consistency of data is ensured by the snapshot server that increments the corresponding 
timestamp only when there is no gap between transactions that are committing but they haven’t become 
readable yet. 
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3.2.2 Parallelization and Distribution 

Figure 7 depicts the major architectural components of the INFINITECH data management layer. We can see 
that it consists of instances of the query engine, which incorporates a local transactional manager, the KiVi 
key-value internal datastore, which implements the MVCC (Multi-Version Concurrency Control) that is a pre-
requirement for the snapshot isolation to be used, and which is the persistent storage engine of the 
platform. Those two components can scale out independently and it is recommended that they co-exist in a 
node. That means, an instance of a query engine can be responsible for a couple of KiVi instances and all of 
them can be deployed in a single node. When it comes to scaling, we can create an additional identical node 
and let the storage engine redistribute the data load among its data nodes. 

 

 

Figure 7: INFINITECH Data Management Components 

 

In addition, the data management layer also consists of the transaction manager that is placed vertically in 
the figure, meaning that it is independent of the number of query engine or data nodes instances the overall 
deployment has. However, as aforementioned, having the transactional manager as a monolithic application 
introduces important bottlenecks as it cannot scale adequately, and thus, we have split it into independent 
components, each one of those is responsible for executing a specific task. The idea of distribution is to 
assign the relatively independent tasks executed by the transaction manager to several independent 
components. As a result, the transaction manager consists of the following subcomponents (see Figure 8): 

 

• Apache ZooKeeper (ZK): Responsible for coordinating the distributed process of the transactional manager. It 
is mainly used to send heartbeats to other components to identify their state and if there is a potential failure. 

• Configuration Manager (CgM): It holds information about the overall configuration of the system 

• Snapshot Server (SnS): It is informed by a transaction when the latter is readable, so that it can forward the 
snapshot timestamp accordingly in order to give the corresponding visibility to forthcoming transactions 

• Commit Sequencer (CmS): It is responsible for the only atomic operation that the transactional manager has, 
incrementing the commit timestamp. As a result, this component cannot scale out, but the amount of work 
that needs to do is tiny and cannot become a bottleneck. 

• Conflict Manager (CflM): Checks for write-write conflicts. More information about this component will follow. 

• Logger (LgCmS & LgLTM): It is responsible for storing the logging persistently to storage so that a transaction 
can become durable and recover in case of failure. 
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• Local Transaction Manager (LTM): This component is included in each instance of the query engine. It is 
responsible for orchestrating each transaction’s state at a local level. 

The deployment diagram of the distribution is depicted in Figure 8. 

 

 

 

Figure 8: INFINITECH Data Management Deployment Diagram 

 

From Figure 8 we can see that the majority of the components can be scaled independently, apart from the 
configuration manager, the commit sequencer and the snapshot server. However, those components 
require very low volumes of CPU and memory usage and usually there is no need for them to scale 
horizontally. The configuration manager only holds information regarding the overall deployment and is 
requested in case there is a need for a component to scale out, and the newly deployed node needs to get 
information about the overall deployment in order to be able to connect to the other components. The 
snapshot server only receives notifications from committing transactions and does a small check to identify 
gap-free transactions in order to update the snapshot timestamp. Finally, the commit sequencer is 
responsible to increment the value of the commit timestamp. Due to the simplicity of these components by 
design, they have been unified in a single process that is called MasterMind. The MasterMind cannot scale 
out, however, in cases where there is a need to serve a very high workload (e.g., where the whole 
deployment consists of hundreds of nodes), we can scale up the instance by increasing the resources of the 
corresponding node. 

On the other hand, the role of the conflict manager is to check for write-write conflicts in order to decide if 
an operation is allowed and which transaction should abort. It can be parallelized and scale out to many 
instances, thus it can support very high rates of operational workload. Each of those instances is responsible 
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for a subset of data keys, which we refer to as a bucket. Data keys consist of the concatenation of the unique 
table identifier plus the data keys themselves and are hashed and assigned to a bucket using the modulo 
function: bucket = hash(key) modulo with the number of overall buckets. The bucket is the unit of 
distribution for the conflict manager and each conflict manager is in charge of a number of buckets.  Each 
bucket is handled by a single conflict manager. The conflict manager keeps at most two values per data item: 
the commit timestamp of the last committed version and the start timestamp of an active transaction 
updating the data item, if any. This, along with the distribution of conflict managers, avoids the conflict 
manager being a bottleneck when it handles the whole set of keys, that can be huge. When a transaction Ti 
tries to modify a data element, it sends a request to the conflict manager to check for potential conflicts. 
This invocation is asynchronous, which means that it is not blocked until the conflict manager responds. In 
case of a conflict that must force the transaction to abort, this will be communicated in the next invocation 
of the conflict manager, or during the commit phase. This is irrelevant, as the transaction must be atomic, 
therefore, it does not matter which operation will cause the abortion, as all operations must be cancelled. A 
conflict is detected if the conflict manager has previously accepted a request from a concurrent transaction 
(either active or committed). Each transaction keeps how many conflict managers have been involved and 
upon successful completion of the commit phase, all the involved conflict managers are informed about its 
commit timestamp so that each conflict manager updates the information about the conflicts and can 
perform the proper checks for future transactions. 

Regarding the logging services, these are responsible to ensure the durability of a transaction, which can be 
handled independently as well. The redo records of a transaction are pushed to the logging service and 
made durable before commit acknowledgement is returned to the user. The logging component, named 
logger, is parallelized and distributed by creating as many logger instances as needed to handle the required 
throughput. Each logger takes care of a fraction of log records. Loggers are totally independent, and they do 
not coordinate. Log records are inserted into the logger’s buffer. The buffer content is flushed at the 
maximum rate the underlying storage allows, minimizing the latency of logging. 

 

3.2.3 Proactive Timestamp Management 

As depicted in Figure 8, almost all components of the INFINITECH data management layer can scale out 
independently to hundreds of nodes in order to serve very high rates of operational workloads. An exception 
is the MasterMind process, which consists of the configuration manager (which does not need to scale out 
as it only holds information about the overall configuration and is rarely invoked), and the snapshot server 
and commit sequencer. Given the overall transaction processing depicted in Figure 5, the request for getting 
the start timestamp is served by the snapshot server, while the request to commit a transaction is served by 
the commit sequencer. Internally, when the local transaction manager notifies that the private write-set is 
readable, the snapshot server is informed in order to update (if possible) the start timestamp, thus updating 
the visibility of the dataset. As discussed before, those two components are responsible for a tiny amount of 
work: increment their corresponding counter. However, even if the amount of work that they are 
responsible for requires a very low amount of computational resources, serving very high rates of 
operational workloads would require their continuous invocation by the millions of transactions and it might 
introduce a bottleneck due to the capacity of the network, apart from the inheritance latency introduced by 
the invocation itself. As a result, the management of those two timestamps becomes the last bottleneck of 
the system. We overcome this issue by implementing  proactive management of the timestamps, both at the 
snapshot server and the commit sequencer level. 

 

Regarding the commit sequencer, it should be invoked once the transaction requests to commit and the 
conflict manager has already ensured that there are no write-write conflicts and the transaction can safely 
commit. The commit timestamp serves to tag the data version/snapshot with this logical number. As a result, 
if two concurrent transactions can safely commit, meaning there are no conflicts between them, it is 
irrelevant which one of the two will get the earliest number first. After all, the snapshot server will eventually 
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update the visibility so that both of their modifications can be visible by forthcoming transactions. In fact, 
instead of having each transaction communicating independently with the commit sequencer, the latter 
sends a batch of commit timestamps to the local transaction manager that is part of the query engine 
instance, and each transaction gets the commit timestamps immediately from it, thus delegating the task to 
synchronize with the commit sequencer to it in a separate thread. 

The whole process is depicted in Figure 9. In the beginning, the commit sequencer is sending an initial batch 
of available timestamps to the local transactional manager. Transactions that need to commit in that 
instance of the query engine, will get values available from that batch. In that case, T1 will be assigned with 
commit timestamp 0 and T2 with the commit timestamp 1, without having to communicate with the commit 
sequencer itself. After a predefined period of time, the commit sequencer will send a new batch of available 
timestamps. During that period, no transaction was requested to commit in that instance. It is important to 
notice that the query engine drops the previous batch and will serve ongoing transactions with values from 
the current active batch. As a result, when T3 needs to commit, instead of being assigned with value 2, it will 
get the first available value from the current batch, which is 3. Again, after the predefined period of time, the 
commit sequencer will send the new batch and the query engine will drop the current one. The reason for 
dropping old batches is to get synchronized with how timestamps are advancing globally. In a distributed 
environment with various instances of a query engine, the commit sequencer will send batches to each one 
of them. If some query engine processes transactions faster, it will receive larger timestamps while a slow 
query engine still uses low-value timestamps. This will delay the advancement of the global snapshot 
counter. As a result of discarding commit timestamps, the snapshot server is not only informed about the 
timestamps of committed transactions but also about unused commit timestamp ranges so that, it can 
advance the snapshot counter appropriately, without having to take into account the gap that is being 
created by the dropping of the batches. 

 

 

Figure 9: Proactive Commit Timestamp Management 

 

When the commit sequencer sends the batch to the local instance, it gets informed about the number of 
overall transactions that have been committed during the previous period. By doing this, it can estimate the 
range of values that it should send to the query engine in order to avoid spending unused timestamps. In our 
example, we can see that after the second provision of the batch, it gets informed that only 2 transactions 
managed to commit, and it decreased the batch size of the third. 

Regarding the snapshot server, it proactively reports the current start timestamp to each instance of the 
query engine by periodically sending this value. As a result, we avoid the communication with the snapshot 
server on a per-transaction basis. Moreover, instead of sending the commit timestamps of each transaction 
to the snapshot server, in order for the latter to advance its counter and to forward the visibility accordingly, 
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we batch those timestamps in groups and send them periodically. These are sent after the commit is 
informed back to the application and the flow is unblocked, so it does not have any impact on the overall 
latency of the transaction.   

 

3.2.4 Asynchronous messages and batching 

As implied by our implementation of the transaction processing, each transaction needs to send several 
messages from performing conflict detection, for reading and writing data and for logging in order to ensure 
the durability of the transaction. Those messages are synchronous, meaning that the process is blocked until 
a notification or a response is received, and as a result, they become part of a critical path that affects the 
overall response time of the transaction. In order to avoid these introduced latencies, we have adopted an 
asynchronous approach whenever possible. For example, instead of waiting to check for a write-write 
conflict, we send the request in an asynchronous manner and we unblock the operation, so that the 
transaction can continue without waiting for confirmation by the conflict manager. If a conflict is detected, it 
will be notified to the transaction on the forthcoming request for a conflict. If there is no other request, it 
will be notified when the transaction requests for a commit. A transaction must be always atomic so it is 
irrelevant at which operation it will be notified to abort, as all operations must be cancelled.  

Moreover, message exchanging for these operations also has a network cost and can also become critical in 
large-scale deployments, so there is the need to reduce the number of messages as much as possible. We 
handle this issue by batching the requests and the responses extensively. In typical batching approaches, 
latency is traded off for throughput what causes an increase in response time. We apply batching combined 
with asynchrony to avoid a negative impact on response time. During the conflict detection, a naïve 
implementation would be to send a request for conflict on each update operation. This will not only 
introduce a delay due to the round trip of message exchange but also will cost CPU capacity at the sending 
and receiving sides. Instead, we keep track of all those requests and the local transactional manager 
periodically sends a batch with all requests to the conflict manager. From the transaction point of view, it 
sends a request to its corresponding local manager for conflict detection and continues executing its next 
operation. The local manager periodically sends those batches, which are examined by the conflict manager. 
The latter sends back the responses with the results. By applying this technique, we don’t affect the overall 
response time of the transactions, while at the same time we reduce adequately the number of messages 
that need to be sent across the network. The increased latency of the batch exchange which contains 
numerous requests is being hidden by the concurrent execution. In fact, from a transaction perspective, it 
only needs to wait for the last batch to be received by its local manager. 

 

3.2.5 Session Consistency 

Our solution returns the commit to the client when durability is guaranteed but before the updates of the 
transaction are readable and visible. This approach might violate session consistency. That is, a client might 
not read its own writes across different transactions. Let us consider two consecutive transactions from one 
client, T1 and T2. T1 updates x and commits. T2 starts before T1’s update is visible, and thus, receives a start 
timestamp smaller than T1’s commit timestamp. Therefore, when T2 reads x it will not receive the version 
created by T1. 

 

Session consistency can be implemented by delaying the start of transactions after the commit of an update 
transaction till the snapshot counter reflects the commit timestamp of the committed update transaction. 
Only then, does the local transaction manager assign the start timestamp to the transaction. This delay can 
amount to up to a few tens of milliseconds which it is not an issue for OLTP response times that are in the 
range of 1-2 seconds. It should be noted that a client only pays this delay when it starts a transaction 
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immediately after committing an update transaction. After committing a read-only transaction (typically 
around 90% of the transactions in OLTP workloads) no delay is paid. Also, if a client does something else 
between the commit of an update transaction and the start of a new transaction, this delay can be partially 
or fully masked. 
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4 INFINISTORE Scalability Boosting Performance 
Scalability is the ability of a system to deliver better performance when the size of the system is increased 
with more resources. However, it is not always very clear what better performance means. In databases, the 
two most important performance metrics are throughput and response time. It is important to define them 
in order to understand how they can be improved. 

Firstly, throughput is the number of operations per time unit a system can make. In the case of a database, 
typical throughput measures are transactions/second, inserts/second, queries/second. It is important to 
understand that a throughput metric is given for a particular workload, software system and underlying 
hardware. Changing the workload might have a dramatic effect on the throughput. For instance, a workload 
might be limited by one resource, say CPU, and when the workload changes, it might become limited by 
another resource, say IO bandwidth. This workload change can typically slow down by more than an order 
magnitude the database throughput. 

Response time on the other hand, is the time from submitting an operation until receiving the answer. It is 
important to define under which conditions the response time is measured. For operational databases, 
response time only makes sense to be measured while we inject a particular workload and the system is in a 
steady state, delivering a stable throughput. For instance, one can measure the average response time of the 
transactions. If the workload contains different kinds of transactions, which is most common, averaging the 
response time per kind of transaction is more informative than just the global time. What is more, the 
average is not sufficient. What you actually need to know is the actual distribution of the response time. The 
average plus the percentiles (90%, 95% and 99%) provide a good insight into how the database behaves. 
However, you also need both throughput and response time for any given workload to understand how 
response time evolves with increasing throughput. 

 

4.1 Vertical versus Horizontal Scalability 
Coming back to the definition of scalability4, it is defined as the ability to deliver more throughput when we 
use more resources, but what does more resources mean? It depends on whether the system is centralized 
or distributed. Thus, scalability can be classified between vertical or horizontal, depending on what we mean 
by more resources. In a centralized system we can increase the number of CPUs, the amount of memory, or 
storage devices to increase computational resources. A database scales vertically when it is able to provide 
more throughput with a bigger computer in terms of CPUs, memory and I/O devices. On the contrary, let’s 
consider a distributed database running on a set of computers connected by a network that shares nothing, 
i.e., on a computer cluster. This is the case of horizontal scalability. A database scales horizontally when 
adding more nodes to the cluster yields more. 

Figure 10 depicts a sample horizontal scalability of a distributed database. The scalability graph has on the X 
axis the cluster size in number of nodes and on the Y axis the related throughput. One node delivers a 
throughput of 500 transactions/sec. By increasing the cluster size, we can observe how the total throughput 
of the cluster increases. With 2 nodes is almost 1,000 transactions/sec, and with 9 nodes is around 2,600 
transactions/sec. So we can observe that the overall throughput in not being increased linearly as we add 
more resources to the system, but instead, it turns out to be downgraded to logarithmic and if we continue 
to add resources, the system reaches its turning point where the overall performance cannot increase any 
more, no matter how many resources we add. 

 

 
4 [Özsu & Valduriez 2020] Tamer Özsu, Patrick Valduriez. Principles of Distributed Databases, 4th Edition, Springer, 

2020 
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Figure 10: Scalability graph 

Another important aspect related to (and often confused with) scalability is speed up. Instead of focusing on 
the throughput, the speed up is the ability to reduce response time by adding more resources. Again, we can 
do it vertically or horizontally. Speed up is often applied to batch processes or processes that are long and 
run in isolation. In databases, speed up is interesting in two cases. A common one is for large analytical 
queries that take a long time to be processed. They can be executed in isolation to exploit all resources, or in 
parallel with other workloads of analytical or operational nature. In Error! Reference source not found., we 
can see an example of horizontal speed up. As we can see with one node, a query takes 325 seconds. When 
using two nodes the time is reduced to 200 seconds. With 5 nodes, the time has gone down to 20 seconds. 
In the case of response time, we also have a bottom barrier that we cannot do faster. After a turning point, 
increasing the number of nodes in the system will not give any benefit to the response time, as the speed up 
has reached its limits. 

 

4.2 Scalability Factor 
As we saw in the previous subsection, the boost of performance in terms of throughput or response time is 
not steady and linear as we add more resources to the system. It is being affected by the architectural design 
of the database management systems, whether they are capable to scale up or out (vertically or horizontally) 
and which are their internal bottlenecks that come with the architectural decisions. As a fact, not all 
databases can scale the same; instead, they scale very differently. Even the same database will scale 
differently depending on the workload (operational or analytical). Scalability can be measured using the 
scalability factor: scale up for vertical scalability and scale out for horizontal scalability. The scalability factor 
gives the throughput normalized to the relative throughput of a single node. It can also be seen as the ratio 
between the throughput of a database with one resource and the same database with a number of 
resources, say n. That is, scalability factor = throughput (n resources) / throughput (one resource). In the 
case of horizontal scalability, we would use the throughput of a cluster with n nodes and a cluster with a 
single node to compute the ratio. For vertical scalability, we would do the same with the number of CPUs of 
a NUMA computer, the throughput of one CPU vs. throughput of n CPUs. From now on, for the sake of 
clarity, we will just talk about horizontal scalability. The reader can easily translate the previous examples to 
deal with vertical scalability. 
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The first question that comes to mind when thinking about scalability is what optimal scalability is, and how 
scalability can vary. Scalability can be logarithmic or linear, but can be also null or even negative. We 
illustrate the different types of scalability with a scalability graph showing the scalability of a clustered 
database, as in Figure 11. Linear scalability is the optimal case. It means that with a cluster of n nodes, you 
get n times the throughput of a single node. For instance, if a single node delivers 1,000 transactions per 
second, a cluster of 100 nodes delivers a throughput of 100,000 transactions per second. In many cases, 
databases exhibit sublinear scalability, although the most common case is that scalability is null for write 
workloads and logarithmic for read/write workloads. Some databases even deliver negative scalability, as 
adding more nodes to the system yields a throughput lower than with a single node.  

 

 

Figure 11: Types of Scalability 

 

4.3 Logarithmic vs. Linear Scalability 
Logarithmic scalability results from wasting capacity due to redundant work and/or contention. Let us look at 
two examples with logarithmic scalability. Open source databases such as MariaDB rely on an old line of 
research called scalable database replication, more commonly known today as cluster replication. Cluster 
replication inherently exhibits logarithmic scalability. The reason is that the writes in the workload are 
executed by all nodes. So only the read fraction of the workload provides some scalability. Another example 
of logarithmic scalability includes databases based on shared disks. In this case, logarithmic scalability stems 
from the need for a concurrency control protocol that locks disk pages to be written, which results in a 
substantial contention that increases with the cluster size. Another important factor that prevents database 
management systems to scale out linearly is the enforcement of transactional semantics. As it has been 
illustrated in section Error! Reference source not found., an OLTP engine makes use of different protocols 
and implementations in order to ensure ACID properties. Traditional relational database systems rely on the 
two-phase locking mechanism, whose implementation requires a centralized component that manages the 
distribution of read and write locks. As a result, even if we continuously increase the size of the cluster in 
cases of a distributed deployment, this component remains central and will reach its limits after a turning 
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point. The more nodes we add, the performance will remain the same. This is not the case however of the 
INFINISTORE, whose transactional management component is built upon the concept of snapshot isolation, 
and has decentralized all its internal components by design, as has been analytically described in the 
aforementioned section.  

On the other hand key-value stores and NoSQL database management systems in general, typically provide 
linear scalability because they are very simple, without addressing the hard problem of scaling transactional 
management (and the so-called ACID properties). Transactional databases that exhibit linear scalability are 
very few due to this restriction. For the NoSQL, adding an additional node in a distributed cluster and the 
ability to balance the incoming load across the deployed nodes can lead to a linear increase of performance, 
as there is no centralized component that needs to do some work in the background. Incoming requests for 
insert operations can target different data nodes, leading to a distribution of I/O access among the nodes. 
The same happens with read requests, where even scan operations can be implemented in a distributed 
manner. However, there are two drawbacks inherited from this type of database. Firstly, they do not offer 
transactional semantics, which is a key requirement for application use cases coming from the finance and 
insurance sector where data consistency, atomic multi-statement operations and parallel execution of 
database transactions in an isolated way is crucial. Secondly, NoSQL database management systems lack rich 
query processing capabilities. In fact, they only support basic get, put and scan operations. This will require 
the data analysts to rely on well-known analytical frameworks for implementing their AI algorithms, and 
these frameworks will need to fetch all data from the datastore into the memory, as they can only perform 
scan. Being able to support rich query processing requires the existence of a dedicated query engine that can 
support all types of SQL operations. However, even some NoSQL vendors offer such functionality, it is 
centralized and cannot benefit from parallel execution of a query statement. INFINISTORE on the other hand, 
provides such a mechanism with its OLAP engine, which will be described in section Error! Reference source 
not found.. 

Regarding the speed up, it can also show different behaviours, from null to linear. A linear speed up means 
that the response time obtained with a centralized system is divided by n in a cluster with n nodes. A null 
speed up means, for instance, that a given query always exhibits the same response time with one or more 
nodes. This is what happens in a distributed database without a parallel/OLAP query engine, that is, without 
intra-query parallelism. The reason is that with inter-query parallelism, each node processes a subset of the 
queries, but each query can only be executed by a single node, so no speed up is possible for queries.  

In the final version of this deliverable, we will include an additional performance evaluation of the 
INFINISTORE, highlighting how our novel architectural design allows for linear scalability when having OLTP 
workloads and the need to ensure ACID properties, while at the same time, can scale out linearly in case of 
OLAP workloads. 
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5 INFINITECH OLAP Engine 
The main goal of task T3.1 “Framework for Seamless Data Management and HTAP” is to provide the 
corresponding framework that will allow for seamless data access on data that might have been needed to 
be distributed among different datastores: an operational datastore that can ensure transactional semantics 
and a data warehouse that can be used to perform OLAP operations. Data are being copied to various 
locations which is expensive in terms of storage, while analytical operations are scanning a previous 
snapshot of the dataset, as the ETL operations that migrate data elements from an operational store to a 
data warehouse are being executed periodically. The INFINITECH solution provides a common platform that 
stores data and allows for both operational and analytical processing, without the need to copy data to 
different locations. This is achieved by providing HTAP capabilities, as explained in the previous sections. 
HTAP is feasible due to the use of the snapshot isolation, as presented in section Error! Reference source not 
found.. The ability to handle OLAP workloads and remove the need of migrating data to a data warehouse 
and delegate to the latter this processing, is based on the OLAP engine of the INFINITECH data management 
layer explained in this section. 

The implementation of the OLAP engine is in progress at this phase of the project (M19) and as a result, in 
this version of the document we present the basic concepts that drive the overall design and 
implementation. This section will be further updated in the second version of the deliverable when the OLAP 
engine is planned to be delivered. 

 

5.1 OLAP overview and connectivity 
As depicted in Figure 7, the data management layer consists of three major components: the KiVi data store, 
the query engine and the transactional manager. The latter has been extensively presented in the previous 
section. Regarding the KiVi data store, it provides the persistent storage of the system. The data elements 
are stored in its data nodes, in a tabular format: It allows for key identification of a tuple, while a tuple can 
have various types of columns. It supports all standard SQL types, and additionally, it supports a column to 
be of a JSON type and enables query processing on the JSON, similar to MongoDB. Moreover, it can create 
indexes on specific columns, thus accelerating data retrieval. It has been integrated with the local 
transactional manager that was presented in the previous section and therefore, it ensures transactional 
semantics and ACID properties. Finally, it exposes an internal API for query processing that can be used 
either directly by the application developer and data analyst, or by the query engine itself.  

The Kivi Data Storage supports various operations for data modification and data retrieval, similar to 
standard SQL. It allows for data insertion, modification and deletion, while it supports data retrieval either by 
a get or a scan operation. The former can make use of the index and directly returns the corresponding tuple 
immediately, with a cost of O(1). A scan operation returns back a pointer to the first element that has been 
accessed, and using an iteration, it returns back the overall result set. It can benefit from the existence of an 
index to accelerate the process. It is important to notice that it can also support the ORDER BY operation, 
however only if the column to be ordered involves an index. It also provides filtering operations that allow 
the retrieval of a subset of a data table, according to the filtering properties. Finally, it also provides support 
for all aggregation operators supported by the SQL standard, such as minimum, maximum, count, summary 
and average. It is important to notice though that these operations are supported partially as they can be 
executed in a single data node. That means that if we have a distributed deployment involving several data 
nodes and a data table has been split among those nodes, the aggregate operations can be executed only 
per-node. The execution of the minimum operation will return the minimum value of a dataset in the specific 
node. It is up to the application developer and data analyst to retrieve the overall minimum of a dataset, by 
comparing the partial minimums that have been retrieved by each one of the nodes. Finally, it cannot 
support JOIN operations between tables. 
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Accessing directly the data nodes is feasible and accelerates the overall performance, as it avoids the 
inheritance overhead introduced by the footprint of the query engine. However, the API is designed to for 
efficient data retrieval and therefore it does not comply with a specific standard, even if it is very similar to 
the one that MongoDB is offering. As the latter also does not comply with a specific standard but instead is 
customized to match the specific needs of the MongoDB datastore, in a similar way, the API that the data 
storage is providing also is designed to match the specific characteristics of the storage layer itself. As a 
result, the direct API cannot be integrated with the popular analytical tools that are dominant in the 
insurance and finance sectors, such as Apache Spark5 or Apache Hive6. 

In order to overcome this issue, there has been implemented a series of additional components that can be 
used instead and are available to the data users of INFINISTORE. Firstly, a python implementation of the 
driver is provided. Data analysts that rely on the python programming language in order to write scripts and 
feed their ML/DL algorithms can benefit from it, as it exposes native python methods that can be used by the 
analyst. This driver consists of a wrapper that encapsulates the complexity of the underlying methods and 
the connectivity details of the API. Moreover, in order to be compliant with popular analytical frameworks 
often used by analysts in the insurance and finance sectors, there has been provided an implementation of 
the OData specification7. The latter is an OASIS standard that defines a REST API in order to access data in 
data management systems. It provides functionalities for data retrieval and data modification. It also defines 
a pair of basic web methods that allows the analyst to execute data aggregation operations. As this 
specification is an OASIS standard, it can be effectively integrated with a variety of analytical frameworks that 
already are compatible with this standard. 

Additionally to the KiVi data storage element, there is also an implementation of the query engine, which is 
based on the Apache Calcite framework8. The latter has been extended to support DDL (Data Definition 
Language) scripts and data modification operations. It provides a standard Java DataBase Connectivity (JDBC) 
driver and its dialect has been extended in order to provide all standard SQL operations, such as data 
modification operations (e.g., INSERT, UPDATE, DELETE) that were missing by the framework. The query 
engine is also integrated with the local transactional manager in order to ensure transactions and it makes 
use of the direct API of the KiVi Data Storage for data access. By using the query engine via its JDBC driver, 
the application developer and data analyst can benefit, as the driver can be directly integrated with all 
popular analytical frameworks that can push down the query execution directly to the datastore. Being 
compatible with standard SQL makes it a powerful tool for data processing, as the engineer and analyst can 
write complicated statements and delegate the query engine itself to process the data. Its query optimizer 
allows transforming the input statement into an equivalent one that can accelerate the overall response 
time of the execution. 

The OData REST API will provide the third element on top of the data storage to retrieve data that is totally 
unnecessary. It only defines a small subset of data operations so there is no operation that cannot be used 
directly via the JDBC. As a result, it provides no benefit implementing this standard on top of the query 
engine in terms of performance or functionality. However, it may appeal to managers who want a familiar 
and standard way to connect with applications that need to consume data from a REST APIs. In cases where 
an analytical framework or other micro service requires the use of REST, it can use the implementation that 
directly accesses the KiVi Data Storage. In fact, using a REST API will imply that complicated operations must 
be done at the application level and cannot be pushed down. This makes the use of the query engine 
meaningless, as its purpose is to provide SQL support and optimize the query execution. 

 

 
5 https://spark.apache.org/ 

6 https://hive.apache.org/ 

7 https://www.odata.org 

8 https://calcite.apache.org/ 
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5.2 Query Optimization 
The OLAP core is part of the query engine and consists of various components that interact in order to 
facilitate and optimize the execution of a statement. The most important of those are the following: 

• Query Planner: It receives a query statement and transforms them into equivalent ones, in the sense that the 
execution of each one of those plans will return the exact same result set. 

• Query Optimizer: It receives a list of equivalent plans, estimates their cost and decides which of the proposed 
ones will have the minimum performance value. 

• Query Executor: it receives the plan decided by the query optimizer and establishes the data pipeline needed 
for the query execution and data retrieval. 

When the query planner receives a statement, it uses an internal compiler in order to create a structural 
representation of the script. Each part of the script involves a specific query operator and the compiler 
creates a structural tree which connects all the operators that need to take place in order to execute the 
query. Let’s have a look at the following query: 

 

SELECT t1.name, t2.account_number 

FROM Persons as t1 INNER JOIN Accounts as t2 on t1.person_id = t2.person_id 

WHERE t1.age > 60 

 

This defines a scan operation on two tables, a join operation over two tables, a filtering operation with a 
specific predicate, and a projection over two fields. The tree of the query operations of this statement will be 
the one depicted in Figure 12. 

 

 

 

Figure 12: Tree of query operators 
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We can see that this query will execute two scan operators over the Persons and Accounts data tables, will 
join the intermediate results, then will filter out those tuples that have the age column lower than 60, and 
will finally remove all other columns apart from the name and account that need to be projected to the final 
result set. 

When the query planner constructs the tree of query operations, it applies various transformation rules that 
are available in order to propose equivalent plans. The rules should result in a plan that is valid and 
equivalent. For instance, an alternative plan can be the one depicted in Figure 13. 

 

 

Figure 13: Alternative query plan 

 

The planner proposes an alternative plan that the filtering operation should be pushed down and executed 
before the selection of the tuples of the Person table. Making use of a greedy algorithm, it produces various 
transformations that are being sent to the query optimizer to estimate the cost of each of the plans. The cost 
takes into account three metrics: number of I/O access(es), size of tuple and number of rows each operator 
will return. The number of I/O access is important as this is a heavy operation with increased latency. The 
size of the tuples affects the number of bytes that need to be sent over the network when fetching data 
from the data storage and the size of memory the query engine requires in order to execute the statement. 
Finally, the number of rows is important in operations such as the various implementations of the join 
operation or ordering when this cannot be pushed down to the KiVi data storage level. The optimizer makes 
use of various statistics available by the latter in order to have a better estimation of the cost. For instance, it 
can know if a column is indexed, the histogram of the distribution of the data over the index etc. 

Each type of operator might have various implementations. For instance, the filtering operation might have 
an implementation that sends the filtering to be executed in the KiVi data storage level or in the query 
engine itself. For instance, Figure 12 implies a filtering implementation on the query engine, while Figure 13 
implies that the filtering will be pushed down to the KiVi data storage. As the latter provides support for the 
majority of the SQL operations, many operations can be pushed down to that level, accelerating even more 
the overall performance by exploiting data locality and the fact that lesser tuples are being transmitted over 
the network and lesser number of tuples need to be processed in the query engine level. 
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The join operation is another example of an operation that has various implementations. Currently, the 
query engine has been designed to support the nested-loop join, the merge join, the hash join, the equity join 
and the bind join. Apart from the nested-loop join operations, all others are currently either under 
implementation or under evaluation by the query optimizer, and therefore more information regarding the 
details of the different implementations will be given in the next version of the deliverable.  

Another important feature of the query engine is the ability to create custom operations via the use of table 
functions. This can extend the already functionality and enable it to access data from external sources. For 
instance, an implementation of a table function might allow executing a query statement in MongoDB and 
retrieving the results to the query engine. This implementation of the table function will be part of the tree 
of operators that the planner proposes and will be part of the data pipeline established by the query 
executor. By doing this, we can enable polyglot capabilities in the INFINITECH data management platform. 
These will be explained in the corresponding series of deliverables of task T3.2 “Polyglot Persistence over 
BigData, IoT and Open Data Sources”.  

In our example, the most efficient query plan will be probably the following: 

 

Figure 14: Cost-effective query plan 

 

 

 

This implies that the query executor will make use of a filtering operation in the Kivi Data Storage level to 
eliminate the tuples of the Persons table that won’t be part of the JOIN and do not need to be transferred to 
the query engine level, it will push down the projections to the Kivi Data Storage again, so as to reduce the 
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amount of data that need to be transmitted over the network, and finally, it will make use of a JOIN 
operation in the query engine level. According to the information available by the KiVi data storage, it can 
use different types of implementations of the JOIN. For instance, if the column person_id of the data table 
Accounts is indexed, this means that it is possible to retrieve data in an ordered manner on this field. 
Assuming that the person_is of the Persons table is a primary key, and therefore indexed by default, both 
selections in the KiVi Data Storage can retrieve data in an ordered fashion. As a result, the merge join 
implementation might be optimal, as it quickly eliminates data that won’t be part of the final result (i.e. 
tuples concerning accounts that are related with people younger than 60 years old), but it requires that both 
operands of the JOIN must be ordered. In the end, the query executor initializes the instance of all those 
operators, establishes a data pipeline and starts asking for data from the top operator. All operators 
implement the same interface, so that the details of the execution are transparent regardless of the type of 
the operator. Each time, the executor invokes the next method of the interface, and its implementation asks 
the operator above according to the pipeline to get more data, by also invoking its next method. Operators 
also might pre-fetch data in order to accelerate the data movement across the different nodes of the query 
plan. 

 

5.3 Parallel OLAP Engine 
As mentioned at the beginning of this section, the main objective of Task T3.1 is to provide a data framework 
for seamless data access when mixing OLTP with OLAP workloads. Typically, for the former, operational 
datastores are being used that are capable to ensure transactional semantics, while for the latter, data is 
migrated to data warehouses that provide powerful analytical capabilities and can process large amounts of 
data efficiently. The INFINITECH data management platform intends to cover this need for HTAP processing. 
We’ve already explained how the system can handle very efficiently OLTP workloads and how it can be used 
for data retrieval supporting all types of analytical operations. The previous subsection described how it can 
benefit from the query optimizer of the query engine to accelerate the response time of the query execution 
as it can propose an optimal execution plan. However, in order to truly fulfill the requirements of an OLAP 
datastore that has been built to efficiently execute analytical queries, the data management engine must 
allow for the parallel execution of the query. In INFINITECH, we provide 4 types of parallelism: 

• Inter-query parallelism: Each query can be executed in a different node. The end-user submits a statement via 
the JDBC driver, and the latter decides which of the available instances of the query engine has a lesser 
amount of work and consumes lesser resources, so that it can assign the execution of the query to a specific 
instance. 

• Intra-query parallelism: The query itself can be split and can be executed in parallel in different nodes in a 
distributed manner. 

• Inter-operator parallelism: Each operator that is part of the query can be executed by a different node. That 
way, different nodes can be responsible for the execution of different operators and thus, distribute the 
computational resources needed among the instances of the query engine. 

• Intra-operator parallelism: An operator itself can be executed in a distributed manner. This means that it can 
be split into different data nodes and the master node can merge the partial results and return the overall set 
to the upper layer in the query plan. 

The innovation of the INFINITECH data management system with respect to its analytical capabilities lies in 
its ability to provide intra-operator parallelism to cost-demanding operators, such as the various 
aggregations and the join operator. In fact, the ability of the KiVi Data Storage to partially execute 
aggregations together with the intra-operator parallelism gives a lot of improvement in the overall response 
time of the execution. The whole operator can be pushed down to the KiVi Data Storage and can be 
executed in a distributed way. An aggregation operator typically involves a scan operation that retrieves the 
tuples that need to be calculated and then applies the aggregation. In a distributed deployment where a 
data table has been split into various data nodes, each one of the nodes will only scan the amount of data 
that is concerned, and therefore the overall execution can benefit from the parallel scan that takes place on 
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each of the data nodes. After the scan, the aggregation is applied and the results are merged from each of 
the partial executions. To clarify how this happens, the overall minimum value is the minimum value of the 
partial results. The overall maximum value is again the maximum value of the partial maximums. The overall 
count and summary are also the summary of the partial count and summary results. The only difference 
comes with the overall average which cannot be the average of the partial average retrieved by each data 
nodes. However, the overall average is defined by the overall summary divided by the overall count. As we 
saw, those two operations can be executed in a distributed manner and therefore, the overall average can 
be also executed by distributing the load to different nodes. 

In order for the intra-query and intra-operator parallelism to be achieved, it is required that a data shuffle 
operator is available. This is important for the join operator that cannot be pushed down to the KiVi Data 
Storage, as the latter does not support this operation. The shuffle operation broadcasts data retrieved by the 
distributed operators to all involved nodes. That way, in case we have a join between two tables that will be 
implemented by a nested-loop join, this will involve the scan of the data of each of the tables. The OLAP 
engine can push down the scan down to the KiVi Storage, and the operation can be executed in a distributed 
manner, as shown. As we support intra-operator parallelism, the join will be executed in a distributed 
manner among the instances of the query engine. The master node fetches data from the left side of the join 
and broadcasts themed to all the nodes that are executing the operator. Each node then picks up the value 
from the pipeline of the shuffle and enforces the logic implemented by the operator to retrieve only the 
corresponding value of the right hand of the join. The intermediate results are being collected by the master 
node which in turn, returns the result to the upper layer of the query plan.  
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6 INFINISTORE Dual SQL/NoSQL Interface 
Many use cases coming from the insurance and finance sector require monitoring specific entities. In the 
insurance sector this is a typical case when collecting IoT data coming from various sensors (i.e. velocity of a 
vehicle, heart rate of a person, or weather conditions in a soil), while in the finance sector the monitoring of 
financial transactions of customers or exchange rate currencies is often required. The cost of monitoring 
solutions highly depends on the required footprint to ingest the monitoring data and to query these data. 
Today there is a duality in existing data management solutions. On one hand, NoSQL technology and, more 
particularly, key-value data stores, are very efficient at ingesting data. However, queries are not efficiently 
processed since they have a dramatic trade-off due to the data structures they use to manage data, this 
makes them very efficient for ingesting data, but very inefficient for querying data. On the other hand, SQL 
databases are symmetric. They are very efficient at querying data. However, they are very inefficient at 
ingesting data. Until now, architects of monitoring solutions had to choose one of the options, accepting its 
severe trade-offs, or building complex architectures combining both kinds of data management that result in 
high cost of engineering and maintenance. 

One differential key feature of INFINISTORE is its dual interface SQL & NoSQL. To better understand how this 
works, it is important to highlight the main building blocks of its internal architecture, which lies in three 
subsystems: i) a relational distributed key-value data store, ii) a transactional management system and iii) an 
SQL query engine. The relational key-value data store can ingest data at very high rates thanks to its novel 
architecture and underlying data structures to process updates and queries. It is able to cache updates and 
propagate them in batches to maximize the performance of every IO that is useful for multiple updates. This 
means it is able to ingest data very efficiently, unlike SQL databases that have to perform several I/Os per 
updated row. At the same time, it provides efficient queries over the ingested data, since queries use a B+ 
tree as SQL databases. Cached updates are merged with the read data from the B+ tree to provide fully 
consistent reads. Therefore, the INFINISTORE has been able to provide the efficiency of data ingestion of 
key-value data stores, combined with the efficiency of query processing of SQL databases. 

 

6.1 Problems with query processing in SQL and NoSQL datastores 
Firstly, we will examine what happens if we implement the monitoring system using a NoSQL data store. In 
this category of database management systems, the data ingestion is quite efficient, since key-value data 
stores are based on SSTables that cache updates and write them to disk periodically on a different file, 
therefore amortizing a few I/Os to write many rows. However, they have a severe trade-off with the 
efficiency of reads. Reads become very expensive. Let’s give a concrete example, assuming a simple range 
query. In the SStable, a particular horizontal data fragment will be split across many different files. All these 
files have to be read to be able to perform the range query. This results in a high inefficiency when reading. 
SSTables can be improved so data is stored as B+ trees in each SSTable, which is more beneficial. Now the 
search must be performed across many B+ trees. Assume for simplicity that there are 16 SSFiles, each with a 
B+ tree, so we need to perform the search of the first key of the range in 16 B+ trees that will be 16 times 
smaller. Assume each B+ tree has 1024 blocks. So, each search will need to access log (1024) blocks = 10 
blocks. There are 16 searches so it will result in reading 160 blocks. In the case of a single B+ tree we would 
have performed the search in a B+ tree with 16384 blocks and reading log (16384) = 14 blocks. So, the 
NoSQL solution is reading 160 blocks while the SQL is reading 14 blocks, more than an order of magnitude 
more blocks. 
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Figure 15: SSTable Approach Used by NoSQL Data Stores 

 

Traditional SQL databases on the other hand, will process the queries efficiently thanks to the underlying 
data structure; the B+ tree. However, these data structures will also result in high inefficiency when it comes 
to ingesting the data. This is due to the size of targeted data, typically in the order of TBs, not fitting in the 
memory. Assume we have a table of 1TB. The B+ tree will grow to, for instance, 6 levels for storing all the 
data. If the database runs on a node with 128 GB of memory, it will fit below 25% of the data in the cache, 
typically nodes from the root and levels close to the root, as depicted in Figure 16. 

 

 

Figure 16: B+ Tree and Associated Block Cache 

This means that in practice every insertion has to reach the target leaf node that, in the example, will mean 
reading an average of 3 blocks from persistent storage. All these read blocks will force the eviction of the 
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same number of blocks from the cache, causing an average of 3 blocks to be written to persistent storage. 
That is, a single row is causing 6 I/Os. That is why traditional SQL database management systems are very 
inefficient at ingesting data. 

 

6.2 INFINISTORE: Blending SQL and NoSQL 
In this subsection we see how the INFINISTORE solves the problem of ingesting data efficiently in very high 
rates, while at the same time, providing rich query processing capabilities. The INFINISTORE uses a relational 
key-value data store as a storage engine which is quite unique because of this blend of relational and key-
value natures. It does so at different levels. Firstly, due to the way updates and queries are processed, 
secondly, thanks to its NUMA-aware architecture, and thirdly, due to its dual interface. As a matter of fact, 
the INFINSTORE uses two different caches: one cache for reads and one cache for writes. The underlying 
data structure is the B+ tree plus the two caches. The write cache stores all insertions, updates and deletions 
of rows in its memory. The read cache is an LRU block cache that stores the most recently read blocks in its 
memory. The LRU policy is modified so it is still efficient when the write cache is propagated to persistent 
storage or in the presence of large queries reading many rows and requiring it to access many disk blocks. 
INFINISTORE is storing the persistent data in B+ trees as SQL databases do, as depicted in Figure 17. A B+ 
tree is a search n-ary tree. Data are actually only stored on the leaf nodes. 

 

 

Figure 17: A B+ Tree 

 

The intermediate nodes only store keys to enable them to perform the search. The stored keys are the split 
points of the data stored on the different children sub-trees, as can be seen in Figure 18. Searching for a 
particular key, sk (search key), allows one sub-tree to be chosen at each node of the tree, since it is known 
that the rest will not contain that key. For instance, if sk is higher than k1 but lower than k2, we know the 
data can only be on the middle sub-tree. This process is repeated iteratively until the leaf node that contains 
the searched row is reached, as in Figure 17. 
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Figure 18: Logarithmic search in a B+ Tree 

 

The search tree nature of the B+ tree guarantees that the leaf node(s) containing the targeted rows can be 
reached with a logarithmic number of blocks. This is why INFINISTORE is as efficient in querying data as SQL 
databases. As previously mentioned, NoSQL data stores result in queries that are more than an order of 
magnitude less efficient in terms of reading blocks from persistent storage (that make NoSQL more 
inefficient for IO bound workloads) and the number of key comparisons performed (that make NoSQL more 
inefficient for CPU-bound workloads). The way writes are processed overcomes the inefficiency of SQL 
databases that require multiple I/Os to insert a single row. INFINISTORE uses a cache of writes that prevents 
it from having to perform multiple accesses to reach the leaf node of each, as depicted in Figure 19. 

 

 

Figure 19: INFINISTORE B+ Tree and Write and Read Caches 
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INFINISTORE’s B+ tree, plus the read and write caches, enable the following: by caching writes and 
propagating them only periodically to persistent storage, several writes going to the same leaf node amortize 
the necessary I/Os across many different writes. By using a B+ tree and caching blocks, it enables the number 
of read blocks from persistent storage to be minimized. Therefore, it is able to ingest data as efficiently as 
NoSQL and able to query data as efficiently as SQL. 

Another factor that results in INFISTORE’s efficiency is its architecture, which is designed for NUMA 
architectures. Its internal data node servers are allocated to CPU sockets and memory local to the CPU 
socket. That way, they prevent the expensive NUMA remote access (in terms of extra latency) and avoid 
exhausting the memory bandwidth (avoiding a bottleneck). The third factor for better efficiency is that SQL 
databases rely on SQL for all operations over the database. SQL processing and associated interfaces (e.g., 
JDBC or ODBC) result in high overheads for insertion workloads. However, INFINISTORE, thanks to its dual 
NoSQL and SQL interface, is able to perform the insertions/updates. This is done through the NoSQL API that 
is as highly efficient as other NoSQL APIs, yet avoids all the overhead of SQL and associated APIs such as 
JDBC. 

 

6.3 Putting everything down with an example 
Monitoring tools have to face at least two key data challenges. Firstly, to minimize the hardware footprint to 
ingest the data stream generated by agents, probes, and device polling. The minimum required footprint 
defines the pricing/efficiency ratio which, in summary, strongly determines the TCO. Secondly, to reply to 
the recurrent queries in an end-user acceptable time. In other words, these data need to be queried from 
the dashboards in order to provide a view of the evolution of different metrics and, in the case of incidents 
being able to drill down to the detailed data, to find out what caused the incident or the alert. 

We will define the following scenario: Monitoring 110M agents polling a sample once every five minutes and 
collecting 10 metrics/samples. This scenario generates an incoming data stream of 366K samples/s and 
3.666M metrics/s. How does a traditional SQL open-source database deal with it? We may use as a reference 
around 15K samples/s as an optimal intaking pace for this type of database. In short, we need around 24 
servers to handle the described workload. How does key-value storage manage this scenario? Using as a 
reference this benchmark published by ScyllaDB, a key-value database in a three-node cluster of i3.8xlarge 
(32 vCPUs, 244GB) achieves a similar intaking rate (~320K). On the other hand, getting results after initial 
experimentation, the INFINISTORE can ingest this ingestion rate with a couple of four-core servers 
(m5.xlarge), which confirms that by using the INFINISTORE database, it is possible to reduce the deployment 
size and the TCO. 
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7 INFINISTORE Kafka Connector 
Modern integrated solutions coming from insurance and finance sectors tend to use loosely-coupled micro-
services that communicate with each other in an asynchronous manner. When it comes to analytics, the 
need for always available microservices requires unnecessary costs for resources, as the analytics are not 
being invoked continuously. Therefore, there is the requirement for dynamical deployment of tools that can 
communicate with each other, formulating a data pipeline. The same concept is valid for the data ingestion 
processes. The latter might include several processing functions that perform specific jobs (i.e. data cleaning, 
pre-processing, quality assurance etc.) that are also loosely-coupled and formulate a data ingestion pipeline. 
As these microservices need to communicate asynchronously ensuring high availability and fault-tolerance, 
the most popular intermediate is the use of data queues: the result of each function is being pushed to a 
queue, and that result can be available for one or many other functions in the pipeline. Apache Kafka9 is the 
most dominant when it comes to data items.  

The need for using an intermediate like Apache Kafka is also highlighted by the proposition of INFINITECH on 
how to deploy integrated solutions. One of its key concepts is the use of isolated sandboxes that host all 
software components and building blocks of an application. As described in the corresponding deliverables 
of WP6, the deployment is being done in an automated manner, using the Kubernetes container 
orchestration system. In such a way, all software artefacts of an integrated solution are being given a 
common namespace, and they can interact with each other inside the namespace. Software artefacts 
deployed under a namespace consist of a sandbox. Using such a concept, it allows for the portability of the 
sandboxes, as they can be deployed in different infrastructures. This is a key outcome of INFINITECH, as a 
sandbox can be re-used by other pilots of a future customer for experimentation.  

Even if the software artefacts can interconnect inside the namespace of the sandbox, it requires an 
additional effort for external components to connect inside. To manage this need, in INFINITECH we provide 
an image that contains a Kafka data queue that can be deployed inside the sandbox. External components 
can send data feeds to this queue, by subscribing to a specific topic and then sending the data in a common 
way. The provision of this image is part of the activities of T3.1. In this section, we focus on how to use this 
queue to ingest data from external sources into the INFINISTORE. Such scenarios are very common among 
the majority of the pilots of INFINITECH. For instance, a pilot has deployed an integrated solution inside a 
sandbox, that needs to get the real-time data feed coming from the internal backend systems of a finance 
organization. This information might be relevant with the stream of the financial transactions that happen in 
the runtime. As a crucial component of the toolset required to establish an effective operational or Big Data 
architecture with INFINISTORE, under the scope of T3.1 we have implemented the Kafka sink connector that 
enables interconnection between the INFINSTORE and Kafka through a straightforward configuration file, 
without the need to implement an additional microservice to do this job. The kafka sink connector takes 
advantage of the dual SQL/NoSQL interface described in section Error! Reference source not found., to allow 
for highly-rated data ingestion.  

 

7.1 Main concepts: Kafka with Avro and Schema Registry 
Kafka is a messaging system based on the producer-consumer pattern that uses internal data structures, 
called topics, which temporarily store received data until someone subscribes (i.e., connects) to consume the 
stored data. Kafka is considered a persistent, scalable, replicated, and fault-tolerant system. In addition, it 
offers good read and write speeds, making it an excellent tool for streaming communications. 

 

 
9 https://kafka.apache.org/ 
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Figure 20: A general Kafka data queue 

 

Figure 20 illustrates the main idea of a Kafka Server. A topic within Kafka acts as a FIFO tail for which one or 
more producers can send records (e.g., messages) to a topic, and one or more consumers can read from a 
topic. Consumers always read the records in the order in which they were inserted, and records remain 
available to all consumers, even if one has consumed it previously. This feature is achieved by keeping track 
of the offset per consumer, which is a sequential number that locates the last record read from a topic and is 
unique per consumer. With this approach, a record is ensured that if one consumer has already read it, then 
it remains available to all other consumers who need it because they will have a different offset from the one 
that previously consumed it. 

In order to read data from the Kafka server, the developer or software engineer needs to write a source that 
can read data from the topic, transform the serialized stream of bytes to specific entities (also called POJOs 
in Java-based applications) and then open database connections to insert the data to the database. This 
approach is error prune, needs to be implemented for each specific stream of data and can only be 
accomplished if we have control over the code of the applications inserting or reading records from Kafka's 
topics. If the source of our data is a database, then we will not have control over the code of that database 
because it is a proprietary product with a proprietary life cycle. For this scenario, connectors are available. A 
Kafka connector is a separate process from the Kafka server that acts as a proxy between the data sources 
and the Kafka server. 

As depicted in Figure 21, the connectors are intermediaries between the data sources, such as a database, 
and the Kafka server. In this example, we have a source database from which a raised connector reads as 
well as inserts topics into Kafka's server. This simulates the scenario of sending the newly committed finance 
transactions of financial institutions to Kafka. This allows the processing of the data in another subsystem, 
without intervening with the central operational datastore of the finance organization.  Then, a second 
raised connector reads from Kafka's topics and inserts these into another destination database, which in our 
case will be the INFINISTORE. 

Predefined, open-source connectors are already available to anyone to access, such as the generic JDBC 
connector, file connectors, Amazon S3 loop connectors, and many more for NoSQL databases, like 
MongoDB. In the scope of the project and under the responsibilities of T3.1, the INFINISTORE also features 
its own Kafka connector. 
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Figure 21: Using Kafka Connectors 

 

Additionally to Kafka, a few more concepts must be considered to understand the overall functioning of our 
proposed architecture. Firstly, the data contained in Kafka's topics are neither text nor readable objects or 
entities. Instead, they are key-value structures with byte string values. Serializers are then needed to provide 
the data meaning. A data serializer is an entity that collects byte strings and transforms them into a readable 
format for a system to use, such as a JSON string or Java object. Several types of serializers are available, 
such as StringSerializer, IntegerSerializer, JSONSerializer and AvroSerializer. Using such libraries takes the 
responsibility of (de)serializing the data items from the developers to them. The developers need to only 
focus on how to connect and implement their business logic, letting the low level details to such libraries. 
The serializer code is embedded in the producer and is executed just before sending data to the topic so that 
it receives the data already serialized. Similarly, the deserializer is embedded in the connector and runs just 
before passing the data to the connector code, so that it reads the bytes of the topic and transforms them 
into something understandable by the connector code. 

Finally, a best practice approach is that, before converting the data items into a stream of bytes, a record 
should obey a specified scheme. This helps both consumer and producer to have agreed on the common 
schema of the items that are being inter exchanged, which leads to less error prone code. Our INFINITECH 
Kafka connector requires that the data items that it receives, follow a scheme predefined by the 
programmer. That way the connector can dynamically retrieve the predefined schema, and make the 
necessary transformations using the AvroSerializer before sending the items themselves into the INFINSTORE 
using its dual SQL/NoSQL interface. In fact, our Kafka connector requires the records to obey a schema 
through the use of its DDLs execution capabilities to control the structure of the target tables. In other 
words, if a record is received that obeys the previous schema and the automatic creation option is enabled, 
then the connector creates the target table with the columns corresponding to the fields specified in the 
schema. This is totally transparent to the developer or system integrator. 

A key design decision for using Apache Avro10 is due to the fact that it always works with the schemas of the 
data it serializes. Because Kafka's connector for INFINISTORE requires a schema, this type of serialization is a 
good option for such scenarios because it ensures that schemas exist and are configured as expected. When 
Avro reads or writes a byte string, the schema applied to serialize the data is always present. 

In this case, when the AvroSerializer converts the record created by the Java producer into a byte string, it 
automatically registers the provided schema, so that it is retrieved when the record reaches the connector. 
This feature allows to offload the Kafka topic of redundant information. Otherwise, if we did not follow this 
procedure with Avro, then sending the schema in JSON format would be required for each record sent to the 
topic. Instead, the schema is registered one time, and only the specified field values are sent to the topics. 

 
10 http://avro.apache.org/ 



D3.3 – Hybrid Transactional/Analytics Processing for Finance and Insurance Applications - III 

H2020 – Project No. 856632   © INFINITECH Consortium           Page 48 of 76 

For the AvroSerializer to register and retrieve the schema as described above, a new component must be 
introduced, called the schema registry, which is another process distinct from the Kafka server and 
INFINISTORE connector. The final architecture is depicted in Figure 22. 

 

 

Figure 22: Kafka connector using Schema Registry 

 

Using such an architecture, the producer of the data needs only to define the schema of the incoming data 
items, and then send these items to the target Kafka topic via Avro. The latter will communicate 
transparently with the Schema Registry to store the schema, and then it will serialize the datum that will be 
passed to Kafka. On the other side, the connector that is listening to this topic will get the datum and it will 
deserialize it via Avro as well. On the background, Avro will take the first bytes of the message that 
corresponds to the id of its related schema, and will search for this schema in the Schema Registry, if not 
already cached locally. Then, using this schema, it will deserialize the byte stream into a Java object that can 
now be used by the connector. The latter needs to be configured in advance and using this configuration, it 
will store the datum to the corresponding data table, putting the attributes of the datum into the specific 
columns. A demonstration of how to use our INFINISTORE Kafka connector is given in the following 
subsection. 

 

7.2 INFINISTORE Kafka Connector in Practice 
Our Kafka connector, which makes use of the dual SQL/NoSQL interface provided by INFINISTORE, is being 
used by various pilots of INFINITECH. Here, we will focus on Pilot#2 to give a detailed description of how to 
configure and make use of the Kafka connector and the INFINISTORE, but these guidelines are applicable to 
all other scenarios and pilots.  

Pilot#2 uses a predictive-Var algorithm for risk assessment, which means that it calculates the risk based on 
the incoming input of a data feed that contains the current currency rate per product, where a product is 
considered a finance currency (i.e. EURO to US Dollars etc.). This data feed is coming using a data stream 
generated by the financial institution and needs to be stored (fed into the INFINISTORE) so that it can be 
processed by the algorithm. The incoming data can be shown in the following snippet: 
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1.30896,1.30896,1.30896,1.30896,0,0,2020-08-23 23:59:51,GBPUSD 

1.55506,1.55506,1.55506,1.55506,0,0,2020-08-23 23:59:52,EURCAD 

1.17956,1.17956,1.17956,1.17956,0,0,2020-08-23 23:59:52,EURUSD 

1.30896,1.30896,1.30896,1.30896,0,0,2020-08-23 23:59:54,GBPUSD 

1.30897,1.30897,1.30897,1.30897,0,0,2020-08-23 23:59:57,GBPUSD 

 

We can see that the data contains 6 Double values of a Tik, for a specific currency rate (i.e. EURUSD which is 
EURO to US Dollars) at a specific point in time. The values are related to the opening value of the Tik, its high 
and low values and other information of financial interest. This data is produced externally and needs to be 
stored to the INFINISTORE inside the sandbox. As INFINISTORE is a modern relational database, the DDL 
statement for defining the target table where the data will be stored is the following: 

 

CREATE TABLE TickData ( 

TIK_OPEN DOUBLE, 

TIK_HIGH DOUBLE, 

TIK_LOW DOUBLE, 

TIK_CLOSE DOUBLE, 

TIK_UP DOUBLE, 

TIK_DOWN DOUBLE, 

DATETIME TIMESTAMP, 

PRODUCT VARCHAR, 

PRIMARY KEY(PRODUCT, DATETIME) 

); 

 

The data table contains those six double values, with the addition of the product and the timestamp, which 
formulates a compound primary key. As a relational table, a common way to put the data into the datastore 
would be to open a JDBC (or ODBC) connection to the latter, and perform the data ingestions. As we saw in 
section Error! Reference source not found., this comes with the drawback that relational datastores cannot 
perform data ingestions at high rates efficiently, and also, with the drawback of the footprint overhead of 
the SQL query engine itself. Instead, we make use of the dual SQL/NoSQL interface of INFINISTORE, and most 
specifically, its NoSQL that bypasses the query engine and stores data directly to the data nodes, taking 
advantage of their novel data structure, while ensuring data consistency and enforcing transactional 
semantics at the same time.  

The NoSQL API will be used by our Kafka connector that has been implemented under the activities of T3.1. 
This will be started as a java virtual machine and will start listening for data items from a specific topic of the 
Kafka data queue. When a datum is received, it will make use of the AvroSerializer and then store the data 
item as a new row in a specific data table. The following code snippet shows how we configure the Kafka 
connector to do this work for this user scenario of pilot#2. 

 

name=local-lx-sink 

connector.class=com.leanxcale.connector.kafka.LXSinkConnector 

tasks.max=1 

topics=tickdata 

 

connection.url=kivi:lxis://infinistore-service:9876 

connection.user=APP 

connection.password=APP 

connection.database=JRC 

auto.create=true 

batch.size=500 

connection.check.timeout=20 

 

key.converter=io.confluent.connect.avro.AvroConverter 

key.converter.schema.registry.url=http://localhost:8081 
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value.converter=io.confluent.connect.avro.AvroConverter 

value.converter.schema.registry.url=http://localhost:8081 

 

sink.connection.mode=kivi 

sink.transactional=false 

 

insert.mode=upsert 

 

table.name.format=TickData 

pk.mode=record_key 

pk.fields=PRODUCT, DATETIME 

fields.whitelist=TIK_OPEN, TIK_HIGH, TIK_LOW, TIK_CLOSE, TIK_UP, TIK_DOWN 

 

In this property file, we define the name of the connector class, so that Kafka can invoke it during the 
runtime using reflection, and the name of the instance of the connector that will be used, along with the 
name of the topic that it will start listening to read newly added data. In our case, the topic will be tickdata. 
Then, we provide additional information about the type of serialization that will be used, which in our case 
will be based on the AvroConverter, both for the key and the value of the data items, while a schema registry 
will be also used. We also provide information about the connection URL to the database that will store the 
data, the name of the database, username and password for the connections etc. Finally, the table that will 
store the data is the TickData, and we make use of a primary key that will be provided by the datum itself 
and we will not have to auto-generate them. The fields that consist the primary key are PRODUCT, 
DATETIME, as also defined in the ddl of the table that was shown earlier, while the fields of the value will be 
the TIK_OPEN, TIK_HIGH, TIK_LOW, TIK_CLOSE, TIK_UP, TIK_DOWN.  

It is important to highlight at this point the fact that if the table does not exist in our database, it will be 
created dynamically by our connector during runtime. When a datum is being retrieved, the connector gets 
the related schema and checks if the corresponding table already exists. If yes, it adds the datum. If not, it 
will create the table first. This check happens only when there is the need to grab the schema from the 
registry, which happens the very first time when a data item is received. Then, it caches the schema and the 
table will have already been created. The connector will have to ask the registry to grab the schema only 
when there is a case of schema evolution and the schema has actually been extended. In any case, for being 
able to create a table without having its schema definition in its configuration file, our Kafka connector relies 
on the schema definition of Avro. To better understand how this works, let’s take a look at the following 
code that simulates the generation of Tik data given a real data set.  

 

//here we create the KafkaProducer to send records to the queue 

Properties props = new Properties(); // Create producer configuration 

props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "http://" + CONNETION_URL + ":9092"); // Set Kafka server ip:port 

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 

    io.confluent.kafka.serializers.KafkaAvroSerializer.class); //Set key serializer to Avro 

props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 

    io.confluent.kafka.serializers.KafkaAvroSerializer.class); // Set value serializer to Avro 

props.put("schema.registry.url", "http://" + CONNETION_URL + ":8081"); 

KafkaProducer producer = new KafkaProducer(props); // Create producer 

 

// Create schema objects. We need an chema for the record key and another schema for the record value 

Schema tsType = LogicalTypes.timestampMillis().addToSchema(Schema.create(Schema.Type.LONG)); 

             

// Define the key schema as only one field of Integer type called "id" 

Schema keySchema = SchemaBuilder.record("myKey").namespace("eu.infinitech.jrc").fields() 

    .name("PRODUCT").type().stringType().noDefault() 

    .name("DATETIME").type(tsType).noDefault() 

    .endRecord(); 

// Define the value schema with the rest of the fields defined as columns in the csv file 

Schema valueSchema = SchemaBuilder.record("myValue").namespace("eu.infinitech.jrc").fields() 

    .name("TIK_OPEN").type().nullable().doubleType().noDefault() 
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    .name("TIK_HIGH").type().nullable().doubleType().noDefault() 

    .name("TIK_LOW").type().nullable().doubleType().noDefault() 

    .name("TIK_CLOSE").type().nullable().doubleType().noDefault() 

    .name("TIK_UP").type().nullable().doubleType().noDefault() 

    .name("TIK_DOWN").type().nullable().doubleType().noDefault() 

    .endRecord(); 

 

Using Java, this code defines programmatically the schema that will be used for serializing the data from the 
tiks. In the Kafka connector side, this will be retrieved by the registry, and according to its definition, it will 
create the corresponding relevant table. In our case, it will create 2 fields that will consist of the primary key, 
called PRODUCT and DATETIME, whose types will be String and Timestamp in milliseconds respectively, and 
6 more columns which will be type of Double and can allow null values. After the schema definition, our 
simulator can start sending data to the Kafka queue, as we can see in the following code snippet. 

 

InputStream in = Thread.currentThread().getContextClassLoader().getResourceAsStream("tickdata.csv"); 

try (CSVReader csvReader = new CSVReader(new BufferedReader(new InputStreamReader(in)))) { 

    String[] values; 

    csvReader.readNext(); // Skip header 

    while ((values = csvReader.readNext()) != null) { 

        // Generate record key 

        LocalDateTime dateTime = LocalDateTime.parse(values[6], formatter); 

        GenericRecord avroKeyRecord = new GenericData.Record(keySchema); // Create new record following key schema 

        avroKeyRecord.put("PRODUCT", values[7]); 

        avroKeyRecord.put("DATETIME", Timestamp.valueOf(dateTime).getTime()); 

                      

        // Put values read from the csv file 

        GenericRecord avroValueRecord = new GenericData.Record(valueSchema); // Create new record following value schema 

        avroValueRecord.put("TIK_OPEN",Double.parseDouble(values[0])); 

        avroValueRecord.put("TIK_HIGH",Double.parseDouble(values[1])); 

        avroValueRecord.put("TIK_LOW",Double.parseDouble(values[2])); 

        avroValueRecord.put("TIK_CLOSE",Double.parseDouble(values[3])); 

        avroValueRecord.put("TIK_UP",Double.parseDouble(values[4])); 

        avroValueRecord.put("TIK_DOWN",Double.parseDouble(values[5])); 

                

        // Create a new producer record for topic: "mytopic", key: created key crecord, value: created value record 

        ProducerRecord<Object, Object> record = new ProducerRecord<>("tickdata", avroKeyRecord, avroValueRecord); 

        try { 

            System.out.println("Sending record: " + record.toString()); 

            RecordMetadata res = (RecordMetadata)producer.send(record).get(); // Send the record to Kafka server 

        } catch(SerializationException | InterruptedException | ExecutionException e) { 

            e.printStackTrace(); 

        } 

    }         

} 

// Flush the producer to ensure it has all been written to Kafka and finally close it 

finally { 

    producer.flush(); 

    producer.close(); 

} 

 

This code is the basis of our simulator that we created for pilot#2 and can be found at the relevant code 
repository of INFINITECH11, adapted to use multiple threads to generate the load according to the 
timestamps. 

 

 
11 https://gitlab.infinitech-h2020.eu/pilot_2/ticksimulator 
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7.3 INFINISTORE Kafka connector deployment 
The Kafka queue, integrated with Avro and Schema registry, along with the extensions and the 
implementation of the INFINISTORE connector are provided by the platform and they can be found at the 
code repository12. Using the best practices described in D6.4 and D6.5 reports, the binaries have been 
uploaded to the maven artifactory, while a Dockerfile and Jenkins file have been created that allows the 
automatic build of the corresponding docker image. Having them, then the Kafka queue and the connector 
can be configured for the automated deployment using Kubernetes. Firstly, we would need to define a 
service to expose the related ports over the network that will be established among the deployed pods. 

 

apiVersion: v1 

kind: Service 

metadata: 

  name: lx-kafka-service 

  namespace: pilot2 

  labels: 

    app: lx-kafka 

spec: 

  ports: 

    - name: "8081" 

      port: 8081 

      targetPort: 8081 

    - name: "9092" 

      port: 9092 

      targetPort: 9092 

  selector: 

    app: lx-kafka 

 

Then, we need to allow connections from outside the deployed sandbox, as the user story involves the 
backend of the financial institution to push data to the queue which lies inside. To do so, we need to define a 
loadbalancer, as the following code snippet depicts. 

apiVersion: v1 

kind: Service 

metadata: 

  name: lx-kafka-loadbalancer-svc 

  namespace: pilot2 

  labels: 

    app: lx-kafka 

spec: 

  type: LoadBalancer 

  ports: 

  - name: "9092" 

    port: 9092 

  - name: "8081" 

    port: 8081 

  selector: 

    app: lx-kafka 

 

The difference with the firstly created service, is that the second one is type LoadBalancer which allows 
connections from outside the sandbox. Once defined these two elements, then we need to actually define 
the deployment of the pod of the Kafka queue. We use an all-in-one deployment, where everything will be 
inside a single pod. To do this, we need to define a stateful set, as the following code snippet depicts. 

 
12 https://gitlab.infinitech-h2020.eu/interface/lx-kafka/ 
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apiVersion: v1 

kind: StatefulSet 

metadata: 

  name: lx-kafka 

  namespace: pilot2 

  labels: 

    app: lx-kafka 

spec: 

  serviceName: lx-kafka-service 

  replicas: 1 

  selector: 

    matchLabels: 

      app: lx-kafka 

  updateStrategy: 

    type: RollingUpdate 

  podManagementPolicy: OrderedReady 

  template: 

    metadata: 

      labels: 

        app: lx-kafka   

    spec: 

      containers: 

        - image: harbor.infinitech-h2020.eu/interface/lx-kafka:latest 

          name: lx-kafka 

          ports: 

            - containerPort: 8081 

            - containerPort: 9092 

          resources:  

            limits: 

              cpu: 2000m 

              memory: 2Gi 

            requests: 

              cpu: 1000m 

              memory: 1Gi 

          env: 

            - name: advertised_url 

              valueFrom: 

                configMapKeyRef: 

                  name: lx-kafka-configmap 

                  key: advertised.url    

            - name: topics 

              valueFrom: 

                configMapKeyRef: 

                  name: lx-kafka-configmap 

                  key: topics 

            - name: connection_url 

              valueFrom: 

                configMapKeyRef: 

                  name: lx-kafka-configmap 

                  key: connection.url 

            - name: connection_database 

              valueFrom: 

                configMapKeyRef: 

                  name: lx-kafka-configmap 

                  key: connection.database 

            - name: database_tablename 

              valueFrom: 

                configMapKeyRef: 

                  name: lx-kafka-configmap 
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                  key: database.tablename 

            - name: pk_fields 

              valueFrom: 

                configMapKeyRef: 

                  name: lx-kafka-configmap 

                  key: pk.fields 

            - name: fields_whitelist 

              valueFrom: 

                configMapKeyRef: 

                  name: lx-kafka-configmap 

                  key: fields.whitelist 

      restartPolicy: Always 

      imagePullSecrets: 

        - name: registrysecret 

 

The important thing to highlight in this definition is the name of the image container that will be used to 
create the pod. We use the docker harbor of INFINITECH, where the image has been pushed by the 
automatic CI pipelines defined. Then, we use a list of environment variables that need to be instantiated with 
the corresponding values when the pod has been created. Let’s take a look at the following: 

 

           - name: pk_fields 

              valueFrom: 

                configMapKeyRef: 

                  name: lx-kafka-configmap 

                  key: pk.fields 

 

Here we define an environment variable called pk_fields, whose value will be retrieved from a config map, 
and will assign the value from a key-value set, whose key attribute will be pk.fields. Here, we need to define 
the list of columns that consist of the primary key of the incoming data. For our example in pilot#2 that was 
described in the previous subsection, the config map will be the following: 

 

apiVersion: v1 

kind: ConfigMap 

metadata: 

  name: lx-kafka-configmap 

  namespace: pilot2 

data: 

  advertised.url: 10.2.1.175 

  topics: tickdata 

  connection.url: infinistore-service 

  connection.database: JRC 

  database.tablename: TickData 

  pk.fields: PRODUCT, DATETIME 

  fields.whitelist: TIK_OPEN, TIK_HIGH, TIK_LOW, TIK_CLOSE, TIK_UP, TIK_DOWN 

 

We can see here that the values PRODUCT, DATETIME will be assigned to the aforementioned environment 
variable. Now, each time we create a pod that contains the Kafka connector, these values will be placed at 
the corresponding properties configuration file that we saw in the previous subsection. To do so, the Kafka 
image is using internally a postscript file that is being executed upon initialization of the pod. The script is the 
following: 

 

sed -i "s/IPOFTHEMACHINE/$(hostname -i)/g" ${KAFKA_HOME}/etc/kafka/server.properties 

sed -i "s/IPOFTHEMACHINE/$(hostname -i)/g" ${KAFKA_HOME}/etc/kafka/connect-standalone.properties 
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sed -i "s/REF_TOPIC/${topics}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties 

sed -i "s/REF_CONNECTION_URL/${connection_url}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties 

sed -i "s/REF_CONNECTION_DATABASE/${connection_database}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties 

sed -i "s/REF_TABLE_NAME/${database_tablename}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties 

sed -i "s/REF_PK_FIELDS/${pk_fields}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties 

sed -i "s/REF_FIELDS_WHITELIST/${fields_whitelist}/g" ${KAFKA_HOME}/etc/kafka/connect-lx-sink.properties 

sed -i "s/IP_EXTERNAL_OF_THE_MACHINE/${advertised_url}/g" ${KAFKA_HOME}/etc/kafka/server.properties 

sed -i "s/PORT_EXTERNAL_OF_THE_MACHINE/${advertised_port}/g" ${KAFKA_HOME}/etc/kafka/server.properties 

 

echo 'will wait a bit for the datastore to start' 

sleep 20 

echo 'will start zookeeper' 

nohup ${KAFKA_HOME}/bin/zookeeper-server-start ${KAFKA_HOME}/etc/kafka/zookeeper.properties > nohup_zk.out & 

sleep 2 

echo 'will start kafka server' 

nohup ${KAFKA_HOME}/bin/kafka-server-start ${KAFKA_HOME}/etc/kafka/server.properties > nohup_kafka_server.out & 

sleep 10 

echo 'create _schemas topic cleanup policy as compact' 

${KAFKA_HOME}/bin/kafka-topics.sh --create --topic quickstart-_schemas --bootstrap-server $(hostname -i):9092 

${KAFKA_HOME}/bin/kafka-configs --zookeeper localhost --entity-type topics --entity-name _schemas --alter --add-config cleanup.policy=compact 

sleep 5 

echo 'will start schema registry' 

nohup ${KAFKA_HOME}/bin/schema-registry-start ${KAFKA_HOME}/etc/schema-registry/schema-registry.properties > 
nohup_schema_registry_server.out & 

sleep 3 

echo 'will start lxs connector' 

nohup ${KAFKA_HOME}/bin/connect-standalone ${KAFKA_HOME}/etc/kafka/connect-standalone.properties ${KAFKA_HOME}/etc/kafka/connect-lx-
sink.properties > nohup_connect_lx.out & 

sleep infinity 

 

Here we can see that at the very beginning, we place the environment variables to the corresponding 
configuration properties file that are used internally by the processes of the Kafka connector. In our case, we 
set the environment variable ${pk_fields} that had been defined in the stateful set, and whose value is being 
retrieved by the corresponding config map, to the connect-lx-sink.properties file, replacing the placeholder 
named REF_PK_FIELDS. After placing all defined environment variables, the postscript begins to initialize all 
related processes of the pod: a zookeeper instance, the Kafka queue itself, the schema registry and finally 
our INFINISTORE connector. 
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8 Pilot Adaptation 
During the last phase of task T3.1, additional effort was spent on the adaptation of the INFINISTORE by the 

various pilot use cases of the project. This section demonstrates its configuration, deployment and use by 

several pilots of INFINITECH. Due to the fact that some pilots have left the project and others joined at a 

later stage, not all of them have the same level of maturity, nor have all made use of the INFINISTORE from 

the very beginning. Some relied on the data management layer of the project from the start, while others 

started using their own datastores in order to focus more on the data analytics and business logic of the 

integrated implementation, aiming to switch to INFINISTORE later on. This means that the pilot 

experimentation and validation phase starts after the completion of task  T3.1 and as a result, at the time 

that this final version of the deliverable was written, it was possible to demonstrate the use on 5 pilots. 

However, these pilots cover a diverse list of user scenarios that can be used as guidelines for all others.  

In this section, we will first give details of how to configure and deploy the INFINISTORE data management 

platform. The latter is provided as a docker image that can be deployed using the Kubernetes deployment 

orchestrator. As a result, it provides a unified way for all pilots to make use of it. Then, we give details about 

the use of the datastore by each of pilot#2, pilot#5b, pilot#6, pilot#12 and pilot#13. 

 

8.1 Deploying the INFINISTORE 
The pilots that will be examined in this section can be distinguished as the ones that will be hosted in the 

common NOVA testbed and the ones that have constraints and will be hosted on premise of the institution 

(pilot#5b lead by the Bank of Cyprus and pilot#6 lead by the National Bank of Greece). Even if there are 

different underlying infrastructures for each of the pilots to be hosted, WP6 provides the means for a 

virtualized deployment, no matter what the underlying infrastructure is. It additionally provides the 

requirements for the individual infrastructure’s compliance in order to materialize the INFINITECH way of 

planning and executing deployments. As a result, the configuration that will be demonstrated in this 

subsection can be used for all types of deployments, just by adjusting some parameters. 

Firstly, it is important to denote that the INFINISTORE is used to persistently store data and this need creates 

the requirement to have a persistent storage medium. We can do this in Kubernetes by defining a persistent 

volume claim, as follows: 

apiVersion: v1 

kind: PersistentVolumeClaim 

metadata: 

  name: infinistore-datasets-pvc  

spec:  

  accessModes: 

    - ReadWriteOnce 

  storageClassName: ebs-sc 

  resources:  

    requests: 

      storage: 100Gi 

 

As illustrated above, we define the name of this persistent volume claim that will be used later on when we 

will define the deployment of the INFINISTORE itself, the storage size, which in our case is 100Gbytes and the 

class name of the storage medium. The latter is unique to each infrastructure and might need to be changed 

accordingly.  
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In order to make the datastore available by other components that will need to interact with it, we need to 

additionally define a service kind in Kubernetes that will expose the corresponding ports of the pod to the 

internal network of the integrated deployment. We can do this as follows: 

apiVersion: v1 

kind: Service 

metadata: 

  name: infinistore-service 

  labels: 

    app: infinistore 

spec: 

  ports: 

    - name: "2181" 

      port: 2181 

      targetPort: 2181 

    - name: "1529" 

      port: 1529 

      targetPort: 1529 

    - name: "9876" 

      port: 9876 

      targetPort: 9876 

    - name: "9992" 

      port: 9992 

      targetPort: 9992 

    - name: "14400" 

      port: 14400 

      targetPort: 14400 

    - name: "9800" 

      port: 9800 

      targetPort: 9800 

  selector: 

    app: infinistore 

 

In this code snippet, we set the name to our service as infinistore-service. This will be the name of the 

domain that will provide access to the INFINISTORE. For instance, a connection URL for the JDBC connection 

will be similar to jdbc://leanxcale://infinistore-service:1529/database The service exposes a list of ports, one 

of those is 1529. Therefore, it is valid that this URL tries to access the infinistore-service domain at port 1529, 

which has been defined to be open. Last but not least, the infinistore is the name of the app selector that will 

be defined for the datastore. 

Now that we have defined the persistent volume claim and service, for the datastore itself we are going to 

use a Stateful Set. The following code snippet provides us a template for configuring the deployment of the 

INFINISTORE.  

apiVersion: v1 

kind: StatefulSet 

metadata: 

  name: infinistore 

  labels: 

    app: infinistore 

spec: 

  serviceName: infinistore-service 

  replicas: 1 

  selector: 

    matchLabels: 

      app: infinistore 

  updateStrategy: 

    type: RollingUpdate 
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  podManagementPolicy: OrderedReady 

  template: 

    metadata: 

      labels: 

        app: infinistore 

    spec: 

      initContainers: 

      - name: infinistore-home-fix 

        image: busybox:1.30.1 

        command: ["/bin/sh", "-c", "chown -R 999:999 /datasets"] 

        volumeMounts: 

          - name: infinistore-datasets-storage 

            mountPath: /datasets 

      containers: 

        - image: harbor.infinitech-h2020.eu/data-management/infinistore:latest 

          name: infinistore 

          ports: 

            - containerPort: 2181 

            - containerPort: 1529 

            - containerPort: 9876 

            - containerPort: 9992 

            - containerPort: 14400 

            - containerPort: 9800 

          volumeMounts: 

            - name: infinistore-datasets-storage  

              mountPath: /datasets   

          startupProbe: 

            exec: 

              command: 

                - /bin/sh 

                - -c 

                - python3 /lx/LX-BIN/scripts/lxManageNode.py check QE 

            timeoutSeconds: 5 

            failureThreshold: 30 

            periodSeconds: 10 

          resources:  

            limits: 

              cpu: 4000m 

              memory: 8Gi 

            requests: 

              cpu: 2000m 

              memory: 4Gi 

          env: 

          - name: USEIP 

            value: "yes" 

          - name: KVPEXTERNALIP 

            value: "infinistore-service!9800" 

      restartPolicy: Always 

      imagePullSecrets: 

        - name: registrysecret 

      volumes:  

        - name: infinistore-datasets-storage  

          persistentVolumeClaim: 

            claimName: infinistore-datasets-pvc 

 

In this code snippet, there is various information that needs to be clarified. Firstly, we give the name of 

infinistore, which matches the selector of the aforementioned service. The container will be created by 

pulling the image stored in the project’s harbour: harbor.infinitech-h2020.eu/data-

management/infinistore:latest This is in compliance with the INFINITECH way for deployments. As the 
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INFINISTORE is a building block of the INFINITECH project, it is discoverable by the project’s marketplace and 

available by the project’s private docker registry. In the code snippet, we defined some environmental 

variables that are crucial for the installation of the datastore internally into the container, along with the 

requirements for the latter in terms of computational resources. Last but not least, we make use of the 

persistent volume claim we defined earlier named infinistore-datasets-pvc that will be mounted under the 

path /datasets. 

That is all we need to configure and start the datastore using the Kubernetes deployment orchestrator. 

However, there are pilot use cases that need to access the datastore from outside the private network. Even 

if this is not yet considered a best practice, it might be useful for evaluation and testing purposes during the 

initial deployment and integration phases of the overall solutions. In order to do so, a nodeport must be 

additionally defined as follows:  

apiVersion: v1 

kind: Service 

metadata: 

  name: infinistore-np 

spec: 

  type: NodePort 

  selector: 

    app: infinistore 

  ports: 

    - name: "1529" 

      protocol: TCP  

      port: 1529 

      targetPort: 1529 

      nodePort: 30201 

 

This nodeport maps the internal 1529 port of the datastore’s query engine to the 30201 that can be 

accessible from the internet. The external applications can reach the infrastructure’s public URL to this port, 

and then Kubernetes will forward this request to the internal 1529 port of the infinistore application 

selector, that is, the container that the INFINISTORE is running and was described before. It is the 

infrastructure’s administrator role to further configure the Kubernetes deployment to let the 30201 open, 

however this procedure is out of the scope of this deliverable. 

Having the datastore now properly configured, deployed and running, the next subsections will describe its 

use from various pilots. 

 

8.2 INFINISTORE in Pilot#2 
Pilot#2’s purpose is to conduct risk assessment for products while a stream of ticks that contain current 

information about financial currencies are being added. It defines a number of relational tables for holding 

information about trades and variances, and an additional table that the tick data are being ingested. The 

DDL for the creation of those tables can be seen in the following code snippet: 

CREATE TABLE TickData DISABLE MVCC ( 

TIK_OPEN DOUBLE, 

TIK_HIGH DOUBLE, 

TIK_LOW DOUBLE, 

TIK_CLOSE DOUBLE, 

TIK_UP DOUBLE, 

TIK_DOWN DOUBLE, 

DATETIME TIMESTAMP, 
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PRODUCT VARCHAR, 

PRIMARY KEY(PRODUCT, DATETIME) 

); 

 

 

CREATE ONLINE AGGREGATE MIN_CLOSE_DAILY AS 

sum(TIK_CLOSE) MIN_CLOSE_SUM, 

count(TIK_CLOSE) MIN_CLOSE_COUNT 

FROM TICKDATA 

GROUP BY PRODUCT, 

CTUMBLE(DATETIME, INTERVAL '1' day, TIMESTAMP '1970-01-01 00:00:00') DATETIME; 

 

CREATE ONLINE AGGREGATE MIN_CLOSE_HOURLY AS 

sum(TIK_CLOSE) MIN_CLOSE_SUM, 

count(TIK_CLOSE) MIN_CLOSE_COUNT 

FROM TICKDATA 

GROUP BY PRODUCT, 

CTUMBLE(DATETIME, INTERVAL '1' hour, TIMESTAMP '1970-01-01 00:00:00') DATETIME; 

 

 

CREATE ONLINE AGGREGATE MIN_CLOSE_MINUTELY AS 

sum(TIK_CLOSE) MIN_CLOSE_SUM, 

count(TIK_CLOSE) MIN_CLOSE_COUNT 

FROM TICKDATA 

GROUP BY PRODUCT, 

CTUMBLE(DATETIME, INTERVAL '1' minute, TIMESTAMP '1970-01-01 00:00:00') DATETIME; 

 

CREATE TABLE DEEPVAR ( 

predicted_at TIMESTAMP,  

datetime TIMESTAMP,  

q1 DOUBLE,  

q5 DOUBLE, 

q50 DOUBLE, 

q95 DOUBLE, 

q99 DOUBLE,  

PRIMARY KEY(predicted_at, datetime) 

); 

 

CREATE TABLE DayData ( 

asset1 DOUBLE, 

asset2 DOUBLE, 

asset3 DOUBLE, 

asset4 DOUBLE, 

Datetime DATE, 

PRIMARY KEY(Datetime) 

); 

 

CREATE TABLE VAR ( 

 vc95 DOUBLE,  

 hs95 DOUBLE,  

 mc95 DOUBLE,  

 es95 DOUBLE, 

 vc99 DOUBLE, 

 hs99 DOUBLE, 

 mc99 DOUBLE, 

 es99 DOUBLE, 

 pnl DOUBLE, 

 datetime TIMESTAMP,  

 PRIMARY KEY(datetime) 

); 
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CREATE TABLE Trades ( 

PRODUCT VARCHAR, 

DATETIME BIGINT, 

QUANTITY DOUBLE, 

PRIMARY KEY (PRODUCT, DATETIME) 

); 

 

In this DDL, we can see the table TickData which is similar to the one that was demonstrated in the Kafka 

connector of the previous section. Actually, this data comes from an external stream that connects to the 

Kafka queue described there and using the configuration of the kafka connector, it transparently stores the 

data to this table. A list of additional tables with the keyword ONLINE AGGREGATE is further defined, which 

makes use of this advanced analytical capability that extends the INFINISTORE core and has been 

implemented under the scope of the task T5.3 (“Declarative Real-Time Data Analytics”). More information 

and a demonstrator of this functionality can be found at the T5.3 corresponding deliverables.  

The DDL syntax for defining those tables is specific to the background technology of LeanXcale that provides 

the basic pillar for the INFINISTORE, but is very closely similar to what all database vendors support. For the 

majority of the data tables, a compound primary key consisting of two columns is defined, which will create a 

relevant index in the data structures of the storage engine. 

 

8.3 INFINISTORE in Pilot#5b 
Pilot#5b’s main objective is to provide personalized Business Financial Management services to its clients 

and relies on the INFINISTORE to allow analytical processing over data being ingested concurrently. As a 

result, its HTAP capabilities are crucial for the development of its integrated solution. The DDL syntax to 

define the relational schema in the datastore can be seen in the following code snippet:  

CREATE TABLE USER_CATEGORY_CHANGE ( 

    skAcctKey VARCHAR, 

    TransactionID VARCHAR, 

    OldMaster_Category VARCHAR, 

    step VARCHAR, 

    Master_Category VARCHAR 

); 

 

CREATE TABLE TXN_RULE ( 

    Code VARCHAR, 

    Category  VARCHAR, 

    Master_Category VARCHAR, 

    PRIMARY KEY(Code) 

); 

 

CREATE TABLE MERCHANT_RULE ( 

    Code       VARCHAR, 

    Category VARCHAR, 

    Master_Category VARCHAR, 

    InDataset VARCHAR, 

    PRIMARY KEY(Code) 

); 

 

CREATE TABLE NACE_RULE ( 

    Code   VARCHAR, 

    Category VARCHAR, 

    Master_Category VARCHAR, 
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    InDataset VARCHAR, 

    PRIMARY KEY(Code) 

); 

 

CREATE TABLE DESCRIPTION_RULE ( 

    Keywords   VARCHAR, 

    Category VARCHAR, 

    Master_Category VARCHAR, 

    PRIMARY KEY(Keywords) 

); 

 

CREATE TABLE SME_ACCOUNTS ( 

    skCIF   VARCHAR, 

    SKAcctkey VARCHAR, 

    PRIMARY KEY(SKAcctkey) 

); 

 

 

CREATE TABLE TXN_BOC ( 

    skAcctKey INTEGER, 

    TransactionID INTEGER, 

    Transactioncode VARCHAR, 

    TransactionDate TIMESTAMP, 

    OriginatorBankCode VARCHAR, 

    BeneficiaryBankCode VARCHAR, 

    TransactionTypeCode VARCHAR, 

    OriginalAmount DOUBLE, 

    CurrencyCode VARCHAR, 

    Amount DOUBLE, 

    skTransferAcctKey VARCHAR, 

    ChannelCode VARCHAR, 

    CashierIndicator VARCHAR, 

    BranchIndicator VARCHAR, 

    ATMIndicator INTEGER, 

    PhoneIndicator INTEGER, 

    eBankingIndicator INTEGER, 

    MobileBankingIndicator VARCHAR, 

    ContactlessIndicator VARCHAR, 

    QuickPayIndicator VARCHAR, 

    InterbanktransferIndicator VARCHAR, 

    StandingOrderIndicator INTEGER, 

    TransferCountry VARCHAR, 

    MerchantName VARCHAR, 

    MechantCode VARCHAR, 

    Debit_CreditIndicator VARCHAR, 

    MCCCodeID VARCHAR, 

    CardPresentIndicator VARCHAR, 

    CardInstalIndicator VARCHAR, 

    TransferskAcctKeyNACE VARCHAR, 

    Master_Category VARCHAR, 

    step VARCHAR, 

    beneficiary_skCIF VARCHAR, 

    OldMaster_Category VARCHAR, 

    PRIMARY KEY(TransactionID) 

); 

 

CREATE TABLE CASHFLOW_EXP ( 

    skAcctKey INTEGER, 

    W_1 DOUBLE, 

    W_2 DOUBLE, 

    W_3 DOUBLE, 
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    W_4 DOUBLE, 

    W_5 DOUBLE, 

    W_6 DOUBLE, 

    W_7 DOUBLE, 

    W_8 DOUBLE, 

    W_9 DOUBLE, 

    W_10 DOUBLE, 

    W_11 DOUBLE, 

    W_12 DOUBLE, 

    PRIMARY KEY(skAcctKey) 

); 

 

CREATE TABLE CASHFLOW_INC ( 

    skAcctKey INTEGER, 

    W_1 DOUBLE, 

    W_2 DOUBLE, 

    W_3 DOUBLE, 

    W_4 DOUBLE, 

    W_5 DOUBLE, 

    W_6 DOUBLE, 

    W_7 DOUBLE, 

    W_8 DOUBLE, 

    W_9 DOUBLE, 

    W_10 DOUBLE, 

    W_11 DOUBLE, 

    W_12 DOUBLE, 

    PRIMARY KEY(skAcctKey) 

); 

 

 

8.4 INFINISTORE in Pilot#6 
Pilot#6’s use case creates a recommendation engine for the KYC needs of the National Bank of Greece in 

order to provide customer-specific services and recommendations. It makes use of the INFINISTORE, 

integrated with the Streaming Engine of INFINITECH. For the streaming part, more information will be given 

in the corresponding deliverables of task T3.3 (“Integrated Querying of Streaming Data and Data at Rest”). In 

this subsection, we demonstrate the use of the INFINISTORE itself. Pilot#6 uses the following DDL in order to 

create the corresponding data tables:  

CREATE TABLE SAMPLE_INSTRUMENTS ( 

ISIN_ID varchar(15), 

FIN_MRKT_SYMBOL varchar(20), 

INSTRMNT_CATEGORY varchar(50), 

INSTRMNT_SUBCATEGORY varchar(50) 

); 

 

CREATE TABLE SAMPLE_INF_RISK_PROFILES ( 

CID varchar(30), 

TARGET varchar(17), 

DT_BIRTH varchar(14), 

GENDER_NM varchar(10) 

); 

 

CREATE TABLE SAMPLE_INF_DEP_ACC_TRNS_202010 ( 

TRN_ID varchar(60), 

ACC_ID bigint, 

TRN_CATEGORY varchar(10), 

AMT_TRN double, 
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TRANSACTION_TYPE varchar(38), 

DTT_TRN varchar(27), 

CHANNEL varchar(16), 

CUST_ID_MASKED varchar(30) 

); 

 

CREATE TABLE SAMPLE_INF_CARDS_TRNS_202010 ( 

TRN_ID varchar(100), 

CRD_PAN_ID varchar(16), 

TRN_TYPE varchar(10), 

CARD_TYPE varchar(7), 

INSTLMNT_NO_ID bigint, 

NUM_OF_INSTLMNTS int, 

CHNL_ID int, 

CNTRY_ID char(2), 

DT_TRN varchar(10), 

TRN_AMNT DOUBLE, 

MCC_Name varchar(102), 

MCG_Name varchar(32), 

CUST_ID_MASKED varchar(30) 

); 

 

CREATE TABLE SAMPLE_INF_INV_TRNS_202010 ( 

TRD_ID bigint, 

NET_AMT double, 

TRADE_TYPE varchar(4), 

DT_TRD varchar(10), 

ISIN_ID varchar(10), 

INSTRMNT_ID bigint, 

INSTRMNT_CATEGORY varchar(200), 

FIN_MRKT_SYMBOL varchar(20), 

CCY_ID varchar(4), 

INSTRMNT_SUBCATEGORY varchar(30), 

CUST_ID_MASKED varchar(30) 

); 

 

CREATE TABLE ABT_DATA( 

CUSTOMER BIGINT, 

normal_date VARCHAR(11), 

SNAPSHOT VARCHAR(10), 

TotalScore NUMERIC(9,3), 

QuestionnaireResult VARCHAR(13), 

cu_CST_TYPE_ID SMALLINT, 

cu_DT_REF VARCHAR(11), 

cu_RSDN_CNTR VARCHAR(3), 

cu_CON_TYPID SMALLINT, 

cu_CUST_CAT_ID SMALLINT, 

cu_EMP_TYPID NUMERIC(6,1), 

cu_PRF_CT_ID NUMERIC(6,1), 

cu_CST_DCTG_ID SMALLINT, 

cu_DT_ORIG VARCHAR(17), 

cu_OCP_CTG_ID NUMERIC(6,1), 

cu_PRF_TY_ID NUMERIC(7,1), 

cu_Age NUMERIC(6,1), 

cu_DT_OR NUMERIC(9,1), 

cu_DT_RSD_ST NUMERIC(7,1), 

re_Region VARCHAR(25), 

re_Area_type VARCHAR(10), 

CCCA_ALLANY_CN01_AVG_12M NUMERIC(6,1), 

CCCA_ALLANY_SU01_AVG_12M NUMERIC(9,2), 

CCCX_ALLANY_CN01_AVG_12M NUMERIC(6,1), 
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CCCX_ALLANY_MA01_AVG_12M NUMERIC(8,1), 

CCCX_ALLANY_MI01_AVG_12M NUMERIC(8,1), 

CCCX_ALLANY_SU01_AVG_12M NUMERIC(8,1), 

CCCX_ATMANY_CN01_AVG_12M NUMERIC(2,0), 

CCCX_ATMANY_SU01_AVG_12M NUMERIC(2,0), 

CCDA_ALLANY_CN01_AVG_12M NUMERIC(6,1), 

CCDA_ALLANY_SU01_AVG_12M NUMERIC(20,12), 

CCDX_ALLANY_CN01_AVG_12M NUMERIC(14,8), 

CCDX_ALLANY_MA01_AVG_12M NUMERIC(9,1), 

CCDX_ALLANY_MI01_AVG_12M NUMERIC(9,1), 

CCDX_ALLANY_SU01_AVG_12M NUMERIC(10,2), 

CCDX_ALLCASH_CN01_AVG_12M NUMERIC(2,0), 

CCDX_ALLCASH_SU01_AVG_12M NUMERIC(2,0), 

CCDX_ALLCONS_CN01_AVG_12M NUMERIC(6,1), 

CCDX_ALLCONS_SU01_AVG_12M NUMERIC(8,1), 

CCDX_ALLEDUC_CN01_AVG_12M NUMERIC(6,1), 

CCDX_ALLEDUC_SU01_AVG_12M NUMERIC(11,3), 

CCDX_ALLFOOD_CN01_AVG_12M NUMERIC(7,2), 

CCDX_ALLFOOD_SU01_AVG_12M NUMERIC(9,2), 

CCDX_ALLLIVI_CN01_AVG_12M NUMERIC(6,1), 

CCDX_ALLLIVI_SU01_AVG_12M NUMERIC(9,2), 

CCDX_ALLMOTO_CN01_AVG_12M NUMERIC(6,1), 

CCDX_ALLMOTO_SU01_AVG_12M NUMERIC(10,2), 

CCDX_ALLOTHE_CN01_AVG_12M NUMERIC(6,1), 

CCDX_ALLOTHE_SU01_AVG_12M NUMERIC(8,1), 

CCDX_ALLSERV_CN01_AVG_12M NUMERIC(14,9), 

CCDX_ALLSERV_SU01_AVG_12M NUMERIC(19,12), 

CCDX_ALLTRAV_CN01_AVG_12M NUMERIC(6,1), 

CCDX_ALLTRAV_SU01_AVG_12M NUMERIC(20,12), 

CCcA_AllAny_Cn01 NUMERIC(5,1), 

CCcX_ATMAny_Su01 NUMERIC(2,0), 

CCcX_AllAny_Mi01 NUMERIC(8,2), 

CCdA_AllAny_Su01 NUMERIC(9,1), 

CCdX_AllAny_Mi01 NUMERIC(9,1), 

CCdX_AllCash_Su01 NUMERIC(2,0), 

CCdX_AllEduc_Cn01 NUMERIC(5,1), 

CCdX_AllFood_Su01 NUMERIC(10,2), 

CCdX_AllMoto_Cn01 NUMERIC(6,1), 

CCdX_AllOthe_Su01 NUMERIC(8,1), 

CCdX_AllTrav_Cn01 NUMERIC(6,1), 

CCCA_ALLANY_CN01_AVG_3M NUMERIC(5,1), 

CCCA_ALLANY_SU01_AVG_3M NUMERIC(8,1), 

CCCX_ALLANY_CN01_AVG_3M NUMERIC(6,1), 

CCCX_ALLANY_MA01_AVG_3M NUMERIC(8,1), 

CCCX_ALLANY_MI01_AVG_3M NUMERIC(8,1), 

CCCX_ALLANY_SU01_AVG_3M NUMERIC(9,2), 

CCCX_ATMANY_CN01_AVG_3M NUMERIC(2,0), 

CCCX_ATMANY_SU01_AVG_3M NUMERIC(2,0), 

CCDA_ALLANY_CN01_AVG_3M NUMERIC(6,1), 

CCDA_ALLANY_SU01_AVG_3M NUMERIC(9,1), 

CCDX_ALLANY_CN01_AVG_3M NUMERIC(14,8), 

CCDX_ALLANY_MA01_AVG_3M NUMERIC(9,1), 

CCDX_ALLANY_MI01_AVG_3M NUMERIC(9,1), 

CCDX_ALLANY_SU01_AVG_3M NUMERIC(10,2), 

CCDX_ALLCASH_CN01_AVG_3M NUMERIC(2,0), 

CCDX_ALLCASH_SU01_AVG_3M NUMERIC(2,0), 

CCDX_ALLCONS_CN01_AVG_3M NUMERIC(6,1), 

CCDX_ALLCONS_SU01_AVG_3M NUMERIC(9,2), 

CCDX_ALLEDUC_CN01_AVG_3M NUMERIC(6,1), 

CCDX_ALLEDUC_SU01_AVG_3M NUMERIC(14,1), 
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CCDX_ALLFOOD_CN01_AVG_3M NUMERIC(6,1), 

CCDX_ALLFOOD_SU01_AVG_3M NUMERIC(9,2), 

CCDX_ALLLIVI_CN01_AVG_3M NUMERIC(6,1), 

CCDX_ALLLIVI_SU01_AVG_3M NUMERIC(9,2), 

CCDX_ALLMOTO_CN01_AVG_3M NUMERIC(14,9), 

CCDX_ALLMOTO_SU01_AVG_3M NUMERIC(9,1), 

CCDX_ALLOTHE_CN01_AVG_3M NUMERIC(7,1), 

CCDX_ALLOTHE_SU01_AVG_3M NUMERIC(9,2), 

CCDX_ALLSERV_CN01_AVG_3M NUMERIC(14,9), 

CCDX_ALLSERV_SU01_AVG_3M NUMERIC(9,2), 

CCDX_ALLTRAV_CN01_AVG_3M NUMERIC(6,1), 

CCDX_ALLTRAV_SU01_AVG_3M NUMERIC(9,1), 

CCcA_AllAny_Su01 NUMERIC(9,2), 

CCcX_AllAny_Cn01 NUMERIC(6,1), 

CCcX_AllAny_Su01 NUMERIC(9,2), 

CCdX_AllAny_Cn01 NUMERIC(7,1), 

CCdX_AllAny_Su01 NUMERIC(9,1), 

CCdX_AllCons_Cn01 NUMERIC(6,1), 

CCdX_AllEduc_Su01 NUMERIC(8,1), 

CCdX_AllLivi_Cn01 NUMERIC(6,1), 

CCdX_AllMoto_Su01 NUMERIC(9,1), 

CCdX_AllServ_Cn01 NUMERIC(7,1), 

CCdX_AllTrav_Su01 NUMERIC(9,1), 

CCCA_ALLANY_CN01_AVG_6M NUMERIC(6,1), 

CCCA_ALLANY_SU01_AVG_6M NUMERIC(9,2), 

CCCX_ALLANY_CN01_AVG_6M NUMERIC(6,1), 

CCCX_ALLANY_MA01_AVG_6M NUMERIC(8,1), 

CCCX_ALLANY_MI01_AVG_6M NUMERIC(8,1), 

CCCX_ALLANY_SU01_AVG_6M NUMERIC(9,2), 

CCCX_ATMANY_CN01_AVG_6M NUMERIC(2,0), 

CCCX_ATMANY_SU01_AVG_6M NUMERIC(2,0), 

CCDA_ALLANY_CN01_AVG_6M NUMERIC(6,1), 

CCDA_ALLANY_SU01_AVG_6M NUMERIC(11,3), 

CCDX_ALLANY_CN01_AVG_6M NUMERIC(14,8), 

CCDX_ALLANY_MA01_AVG_6M NUMERIC(9,1), 

CCDX_ALLANY_MI01_AVG_6M NUMERIC(9,1), 

CCDX_ALLANY_SU01_AVG_6M NUMERIC(10,2), 

CCDX_ALLCASH_CN01_AVG_6M NUMERIC(2,0), 

CCDX_ALLCASH_SU01_AVG_6M NUMERIC(2,0), 

CCDX_ALLCONS_CN01_AVG_6M NUMERIC(6,1), 

CCDX_ALLCONS_SU01_AVG_6M NUMERIC(8,1), 

CCDX_ALLEDUC_CN01_AVG_6M NUMERIC(6,1), 

CCDX_ALLEDUC_SU01_AVG_6M NUMERIC(9,1), 

CCDX_ALLFOOD_CN01_AVG_6M NUMERIC(14,9), 

CCDX_ALLFOOD_SU01_AVG_6M NUMERIC(9,2), 

CCDX_ALLLIVI_CN01_AVG_6M NUMERIC(7,2), 

CCDX_ALLLIVI_SU01_AVG_6M NUMERIC(9,2), 

CCDX_ALLMOTO_CN01_AVG_6M NUMERIC(20,15), 

CCDX_ALLMOTO_SU01_AVG_6M NUMERIC(9,1), 

CCDX_ALLOTHE_CN01_AVG_6M NUMERIC(7,1), 

CCDX_ALLOTHE_SU01_AVG_6M NUMERIC(8,1), 

CCDX_ALLSERV_CN01_AVG_6M NUMERIC(6,1), 

CCDX_ALLSERV_SU01_AVG_6M NUMERIC(10,3), 

CCDX_ALLTRAV_CN01_AVG_6M NUMERIC(6,1), 

CCDX_ALLTRAV_SU01_AVG_6M NUMERIC(11,3), 

CCcX_ATMAny_Cn01 NUMERIC(2,0), 

CCcX_AllAny_Ma01 NUMERIC(9,2), 

CCdA_AllAny_Cn01 NUMERIC(7,1), 

CCdX_AllAny_Ma01 NUMERIC(9,1), 

CCdX_AllCash_Cn01 NUMERIC(2,0), 
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CCdX_AllCons_Su01 NUMERIC(9,2), 

CCdX_AllFood_Cn01 NUMERIC(6,1), 

CCdX_AllLivi_Su01 NUMERIC(9,1), 

CCdX_AllOthe_Cn01 NUMERIC(6,1), 

CCdX_AllServ_Su01 NUMERIC(9,1), 

DAcA_AllAny_Cn01_AVG_3M NUMERIC(5,1), 

DAcA_AllAny_Su01_AVG_12M NUMERIC(7,1), 

DAcX_ATMAny_Cn01 NUMERIC(8,1), 

DAcX_ATMAny_Cn01_AVG_6M NUMERIC(20,13), 

DAcX_ATMAny_Su01_AVG_3M NUMERIC(15,2), 

DAcX_AllAny_Cn01_AVG_12M NUMERIC(20,13), 

DAcX_AllAny_Ma01 NUMERIC(15,1), 

DAcX_AllAny_Ma01_AVG_6M NUMERIC(15,2), 

DAcX_AllAny_Mi01_AVG_3M NUMERIC(15,2), 

DAcX_AllAny_Su01_AVG_12M NUMERIC(15,2), 

DAdA_AllAny_Cn01 NUMERIC(6,1), 

DAdA_AllAny_Cn01_AVG_6M NUMERIC(6,1), 

DAdA_AllAny_Su01_AVG_3M NUMERIC(9,2), 

DAdX_APSAny_Cn01_AVG_12M NUMERIC(2,0), 

DAdX_APSAny_Su01 NUMERIC(2,0), 

DAdX_APSAny_Su01_AVG_6M NUMERIC(2,0), 

DAdX_ATMAny_Cn01_AVG_3M NUMERIC(6,1), 

DAdX_ATMAny_Su01_AVG_12M NUMERIC(15,3), 

DAdX_AllAny_Cn01 NUMERIC(9,1), 

DAdX_AllAny_Cn01_AVG_6M NUMERIC(20,13), 

DAdX_AllAny_Ma01_AVG_3M NUMERIC(15,1), 

DAdX_AllAny_Mi01_AVG_12M NUMERIC(12,1), 

DAdX_AllAny_Su01 NUMERIC(15,1), 

DAdX_AllAny_Su01_AVG_6M NUMERIC(15,1), 

DAdX_AllCash_Cn01_AVG_3M NUMERIC(3,0), 

DAdX_AllCash_Su01_AVG_12M NUMERIC(4,0), 

DAdX_AllCons_Cn01 NUMERIC(6,1), 

DAdX_AllCons_Cn01_AVG_6M NUMERIC(20,15), 

DAdX_AllCons_Su01_AVG_3M NUMERIC(8,1), 

DAdX_AllEduc_Cn01_AVG_12M NUMERIC(5,1), 

DAdX_AllEduc_Su01 NUMERIC(8,1), 

DAdX_AllEduc_Su01_AVG_6M NUMERIC(8,1), 

DAdX_AllFood_Cn01_AVG_3M NUMERIC(14,9), 

DAdX_AllFood_Su01_AVG_12M NUMERIC(10,2), 

DAdX_AllLivi_Cn01 NUMERIC(6,1), 

DAdX_AllLivi_Cn01_AVG_6M NUMERIC(14,9), 

DAdX_AllLivi_Su01_AVG_3M NUMERIC(10,3), 

DAdX_AllMoto_Cn01_AVG_12M NUMERIC(6,1), 

DAdX_AllMoto_Su01 NUMERIC(8,1), 

DAdX_AllMoto_Su01_AVG_6M NUMERIC(10,3), 

DAdX_AllOthe_Cn01_AVG_3M NUMERIC(20,15), 

DAdX_AllOthe_Su01_AVG_12M NUMERIC(10,3), 

DAdX_AllServ_Cn01 NUMERIC(7,1), 

DAdX_AllServ_Cn01_AVG_6M NUMERIC(14,9), 

DAdX_AllServ_Su01_AVG_3M NUMERIC(19,12), 

DAdX_AllTrav_Cn01_AVG_12M NUMERIC(14,9), 

DAdX_AllTrav_Su01 NUMERIC(9,2), 

DAdX_AllTrav_Su01_AVG_6M NUMERIC(9,2), 

DAdX_BraAny_Cn01_AVG_3M NUMERIC(14,9), 

DAdX_BraAny_Su01_AVG_12M NUMERIC(15,1), 

DAdX_DCaAny_Cn01 NUMERIC(7,1), 

DAdX_DCaAny_Cn01_AVG_6M NUMERIC(7,1), 

DAdX_DCaAny_Su01_AVG_3M NUMERIC(11,3), 

DAdX_InBAny_Cn01_AVG_12M NUMERIC(9,1), 

DAdX_InBAny_Su01 NUMERIC(12,2), 
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DAdX_InBAny_Su01_AVG_6M NUMERIC(12,2), 

DAdX_OthAny_Cn01_AVG_3M NUMERIC(20,13), 

DAdX_OthAny_Su01_AVG_12M NUMERIC(12,3), 

DAcA_AllAny_Cn01 NUMERIC(5,1), 

DAcA_AllAny_Cn01_AVG_6M NUMERIC(5,1), 

DAcA_AllAny_Su01_AVG_3M NUMERIC(8,2), 

DAcX_ATMAny_Cn01_AVG_12M NUMERIC(20,13), 

DAcX_ATMAny_Su01 NUMERIC(15,1), 

DAcX_ATMAny_Su01_AVG_6M NUMERIC(15,1), 

DAcX_AllAny_Cn01_AVG_3M NUMERIC(20,13), 

DAcX_AllAny_Ma01_AVG_12M NUMERIC(15,2), 

DAcX_AllAny_Mi01 NUMERIC(15,2), 

DAcX_AllAny_Mi01_AVG_6M NUMERIC(15,2), 

DAcX_AllAny_Su01_AVG_3M NUMERIC(15,2), 

DAdA_AllAny_Cn01_AVG_12M NUMERIC(6,1), 

DAdA_AllAny_Su01 NUMERIC(9,2), 

DAdA_AllAny_Su01_AVG_6M NUMERIC(9,2), 

DAdX_APSAny_Cn01_AVG_3M NUMERIC(2,0), 

DAdX_APSAny_Su01_AVG_12M NUMERIC(2,0), 

DAdX_ATMAny_Cn01 NUMERIC(6,1), 

DAdX_ATMAny_Cn01_AVG_6M NUMERIC(6,1), 

DAdX_ATMAny_Su01_AVG_3M NUMERIC(15,1), 

DAdX_AllAny_Cn01_AVG_12M NUMERIC(14,7), 

DAdX_AllAny_Ma01 NUMERIC(15,1), 

DAdX_AllAny_Ma01_AVG_6M NUMERIC(15,2), 

DAdX_AllAny_Mi01_AVG_3M NUMERIC(12,1), 

DAdX_AllAny_Su01_AVG_12M NUMERIC(15,1), 

DAdX_AllCash_Cn01 NUMERIC(3,0), 

DAdX_AllCash_Cn01_AVG_6M NUMERIC(3,0), 

DAdX_AllCash_Su01_AVG_3M NUMERIC(4,0), 

DAdX_AllCons_Cn01_AVG_12M NUMERIC(6,1), 

DAdX_AllCons_Su01 NUMERIC(9,2), 

DAdX_AllCons_Su01_AVG_6M NUMERIC(20,13), 

DAdX_AllEduc_Cn01_AVG_3M NUMERIC(5,1), 

DAdX_AllEduc_Su01_AVG_12M NUMERIC(8,1), 

DAdX_AllFood_Cn01 NUMERIC(6,1), 

DAdX_AllFood_Cn01_AVG_6M NUMERIC(14,9), 

DAdX_AllFood_Su01_AVG_3M NUMERIC(11,3), 

DAdX_AllLivi_Cn01_AVG_12M NUMERIC(14,9), 

DAdX_AllLivi_Su01 NUMERIC(9,2), 

DAdX_AllLivi_Su01_AVG_6M NUMERIC(10,3), 

DAdX_AllMoto_Cn01_AVG_3M NUMERIC(6,1), 

DAdX_AllMoto_Su01_AVG_12M NUMERIC(20,13), 

DAdX_AllOthe_Cn01 NUMERIC(6,1), 

DAdX_AllOthe_Cn01_AVG_6M NUMERIC(20,15), 

DAdX_AllOthe_Su01_AVG_3M NUMERIC(10,3), 

DAdX_AllServ_Cn01_AVG_12M NUMERIC(14,9), 

DAdX_AllServ_Su01 NUMERIC(9,2), 

DAdX_AllServ_Su01_AVG_6M NUMERIC(8,1), 

DAdX_AllTrav_Cn01_AVG_3M NUMERIC(14,9), 

DAdX_AllTrav_Su01_AVG_12M NUMERIC(9,2), 

DAdX_BraAny_Cn01 NUMERIC(7,1), 

DAdX_BraAny_Cn01_AVG_6M NUMERIC(14,8), 

DAdX_BraAny_Su01_AVG_3M NUMERIC(15,1), 

DAdX_DCaAny_Cn01_AVG_12M NUMERIC(14,8), 

DAdX_DCaAny_Su01 NUMERIC(10,2), 

DAdX_DCaAny_Su01_AVG_6M NUMERIC(10,2), 

DAdX_InBAny_Cn01_AVG_3M NUMERIC(9,1), 

DAdX_InBAny_Su01_AVG_12M NUMERIC(12,1), 

DAdX_OthAny_Cn01 NUMERIC(9,1), 
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DAdX_OthAny_Cn01_AVG_6M NUMERIC(9,1), 

DAdX_OthAny_Su01_AVG_3M NUMERIC(22,3), 

DAcA_AllAny_Cn01_AVG_12M NUMERIC(5,1), 

DAcA_AllAny_Su01 NUMERIC(8,2), 

DAcA_AllAny_Su01_AVG_6M NUMERIC(7,1), 

DAcX_ATMAny_Cn01_AVG_3M NUMERIC(8,1), 

DAcX_ATMAny_Su01_AVG_12M NUMERIC(15,2), 

DAcX_AllAny_Cn01 NUMERIC(9,1), 

DAcX_AllAny_Cn01_AVG_6M NUMERIC(9,1), 

DAcX_AllAny_Ma01_AVG_3M NUMERIC(15,2), 

DAcX_AllAny_Mi01_AVG_12M NUMERIC(15,2), 

DAcX_AllAny_Su01 NUMERIC(15,1), 

DAcX_AllAny_Su01_AVG_6M NUMERIC(15,1), 

DAdA_AllAny_Cn01_AVG_3M NUMERIC(6,1), 

DAdA_AllAny_Su01_AVG_12M NUMERIC(8,1), 

DAdX_APSAny_Cn01 NUMERIC(2,0), 

DAdX_APSAny_Cn01_AVG_6M NUMERIC(2,0), 

DAdX_APSAny_Su01_AVG_3M NUMERIC(2,0), 

DAdX_ATMAny_Cn01_AVG_12M NUMERIC(7,1), 

DAdX_ATMAny_Su01 NUMERIC(15,1), 

DAdX_ATMAny_Su01_AVG_6M NUMERIC(15,1), 

DAdX_AllAny_Cn01_AVG_3M NUMERIC(9,1), 

DAdX_AllAny_Ma01_AVG_12M NUMERIC(15,2), 

DAdX_AllAny_Mi01 NUMERIC(12,1), 

DAdX_AllAny_Mi01_AVG_6M NUMERIC(12,1), 

DAdX_AllAny_Su01_AVG_3M NUMERIC(15,1), 

DAdX_AllCash_Cn01_AVG_12M NUMERIC(3,0), 

DAdX_AllCash_Su01 NUMERIC(4,0), 

DAdX_AllCash_Su01_AVG_6M NUMERIC(4,0), 

DAdX_AllCons_Cn01_AVG_3M NUMERIC(14,9), 

DAdX_AllCons_Su01_AVG_12M NUMERIC(10,3), 

DAdX_AllEduc_Cn01 NUMERIC(5,1), 

DAdX_AllEduc_Cn01_AVG_6M NUMERIC(5,1), 

DAdX_AllEduc_Su01_AVG_3M NUMERIC(8,1), 

DAdX_AllFood_Cn01_AVG_12M NUMERIC(14,9), 

DAdX_AllFood_Su01 NUMERIC(10,2), 

DAdX_AllFood_Su01_AVG_6M NUMERIC(10,2), 

DAdX_AllLivi_Cn01_AVG_3M NUMERIC(14,9), 

DAdX_AllLivi_Su01_AVG_12M NUMERIC(10,3), 

DAdX_AllMoto_Cn01 NUMERIC(6,1), 

DAdX_AllMoto_Cn01_AVG_6M NUMERIC(6,1), 

DAdX_AllMoto_Su01_AVG_3M NUMERIC(20,13), 

DAdX_AllOthe_Cn01_AVG_12M NUMERIC(5,1), 

DAdX_AllOthe_Su01 NUMERIC(8,1), 

DAdX_AllOthe_Su01_AVG_6M NUMERIC(8,1), 

DAdX_AllServ_Cn01_AVG_3M NUMERIC(7,1), 

DAdX_AllServ_Su01_AVG_12M NUMERIC(8,1), 

DAdX_AllTrav_Cn01 NUMERIC(6,1), 

DAdX_AllTrav_Cn01_AVG_6M NUMERIC(14,9), 

DAdX_AllTrav_Su01_AVG_3M NUMERIC(10,3), 

DAdX_BraAny_Cn01_AVG_12M NUMERIC(14,8), 

DAdX_BraAny_Su01 NUMERIC(15,1), 

DAdX_BraAny_Su01_AVG_6M NUMERIC(15,1), 

DAdX_DCaAny_Cn01_AVG_3M NUMERIC(14,8), 

DAdX_DCaAny_Su01_AVG_12M NUMERIC(20,12), 

DAdX_InBAny_Cn01 NUMERIC(9,1), 

DAdX_InBAny_Cn01_AVG_6M NUMERIC(14,8), 

DAdX_InBAny_Su01_AVG_3M NUMERIC(12,1), 

DAdX_OthAny_Cn01_AVG_12M NUMERIC(20,13), 

DAdX_OthAny_Su01 NUMERIC(12,2), 
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DAdX_OthAny_Su01_AVG_6M NUMERIC(12,1), 

DA_AVGBALCHNG_12 NUMERIC(14,9), 

DA_BALCHNG_12 NUMERIC(14,9), 

DA_Balance_01MIN NUMERIC(12,2), 

DA_Balance_03MIN NUMERIC(12,2), 

DA_Balance_06MIN NUMERIC(12,2), 

DA_Balance_12MIN NUMERIC(12,2), 

DA_USEBAL100_06 NUMERIC(5,1), 

DA_USEBAL25_03 NUMERIC(5,1), 

DA_USEBAL50_01 NUMERIC(14,10), 

DA_USEBAL50_12 NUMERIC(5,1), 

DA_USEBAL75_06 NUMERIC(5,1), 

OV_AVGBALCHNG_06 NUMERIC(25,6), 

OV_BALCHNG_06 NUMERIC(25,1), 

OV_Balance_01MAX NUMERIC(11,2), 

OV_Balance_03MAX NUMERIC(11,2), 

OV_Balance_06MAX NUMERIC(11,1), 

OV_Balance_12MAX NUMERIC(11,1), 

OV_LimitUse100_03CNT NUMERIC(5,1), 

OV_LimitUse25_01CNT NUMERIC(5,1), 

OV_LimitUse25_12CNT NUMERIC(5,1), 

OV_LimitUse50_06CNT NUMERIC(5,1), 

OV_LimitUse75_03CNT NUMERIC(5,1), 

OV_USEBAL100_01 NUMERIC(14,1), 

OV_USEBAL100_12 NUMERIC(5,1), 

OV_USEBAL25_06 NUMERIC(5,1), 

OV_USEBAL50_03 NUMERIC(5,1), 

OV_USEBAL75_01 NUMERIC(20,16), 

OV_USEBAL75_12 NUMERIC(5,1), 

DA_AVGBALCHNG_03 NUMERIC(23,9), 

DA_BALCHNG_03 NUMERIC(23,14), 

DA_Balance_01AVG NUMERIC(21,4), 

DA_Balance_03AVG NUMERIC(14,4), 

DA_Balance_06AVG NUMERIC(14,4), 

DA_Balance_12AVG NUMERIC(14,4), 

DA_USEBAL100_01 NUMERIC(14,10), 

DA_USEBAL100_12 NUMERIC(5,1), 

DA_USEBAL25_06 NUMERIC(5,1), 

DA_USEBAL50_03 NUMERIC(5,1), 

DA_USEBAL75_01 NUMERIC(14,10), 

DA_USEBAL75_12 NUMERIC(5,1), 

OV_AVGBALCHNG_12 NUMERIC(25,15), 

OV_BALCHNG_12 NUMERIC(25,9), 

OV_Balance_01MIN NUMERIC(11,2), 

OV_Balance_03MIN NUMERIC(11,2), 

OV_Balance_06MIN NUMERIC(11,2), 

OV_Balance_12MIN NUMERIC(11,2), 

OV_LimitUse100_06CNT NUMERIC(5,1), 

OV_LimitUse25_03CNT NUMERIC(5,1), 

OV_LimitUse50_01CNT NUMERIC(5,1), 

OV_LimitUse50_12CNT NUMERIC(5,1), 

OV_LimitUse75_06CNT NUMERIC(5,1), 

OV_USEBAL100_03 NUMERIC(5,1), 

OV_USEBAL25_01 NUMERIC(20,16), 

OV_USEBAL25_12 NUMERIC(5,1), 

OV_USEBAL50_06 NUMERIC(5,1), 

OV_USEBAL75_03 NUMERIC(14,10), 

DA_AVGBALCHNG_06 NUMERIC(24,15), 

DA_BALCHNG_06 NUMERIC(24,9), 

DA_Balance_01MAX NUMERIC(15,2), 
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DA_Balance_03MAX NUMERIC(15,1), 

DA_Balance_06MAX NUMERIC(15,1), 

DA_Balance_12MAX NUMERIC(15,1), 

DA_USEBAL100_03 NUMERIC(5,1), 

DA_USEBAL25_01 NUMERIC(14,10), 

DA_USEBAL25_12 NUMERIC(5,1), 

DA_USEBAL50_06 NUMERIC(5,1), 

DA_USEBAL75_03 NUMERIC(5,1), 

OV_AVGBALCHNG_03 NUMERIC(24,8), 

OV_BALCHNG_03 NUMERIC(24,9), 

OV_Balance_01AVG NUMERIC(20,11), 

OV_Balance_03AVG NUMERIC(14,5), 

OV_Balance_06AVG NUMERIC(21,5), 

OV_Balance_12AVG NUMERIC(21,5), 

OV_LimitUse100_01CNT NUMERIC(5,1), 

OV_LimitUse100_12CNT NUMERIC(5,1), 

OV_LimitUse25_06CNT NUMERIC(5,1), 

OV_LimitUse50_03CNT NUMERIC(5,1), 

OV_LimitUse75_01CNT NUMERIC(5,1), 

OV_LimitUse75_12CNT NUMERIC(5,1), 

OV_USEBAL100_06 NUMERIC(5,1), 

OV_USEBAL25_03 NUMERIC(5,1), 

OV_USEBAL50_01 NUMERIC(14,10), 

OV_USEBAL50_12 NUMERIC(5,1), 

OV_USEBAL75_06 NUMERIC(5,1) 

); 

 

8.5 INFINISTORE in Pilot#12 
Pilot#12 is related to personalized health insurance services. It collects data from end-users via fitbit or 

similar devices, then does pre-processing inside an external application and pushes this data to the 

INFINITECH sandbox that contains the integrated solution. This happens via the data check-in process 

provided under the scope of T5.1 (“Data Collection for Algorithms Training & Evaluation”) integrated with 

the anonymization component developed under the scope of T3.5 (“Data Governance Mechanisms”). The 

output is eventually stored into the INFINISTORE that is further used by the analytical tools developed for the 

needs of pilot#12. This pilot needs the tables to be initially created before the data ingestion process takes 

place. The following DDL statement is used for this need.  

CREATE TABLE Patients ( 

 subjectIdentificationNumber VARCHAR, 

 timeZone VARCHAR, 

 trackerId VARCHAR, 

 baselineDate TIMESTAMP, 

 terminationDate TIMESTAMP, 

 earlyTerminationDate TIMESTAMP, 

 status VARCHAR, 

 sex VARCHAR, 

 birthDate TIMESTAMP, 

 height Double, 

 weight Double, 

 disease VARCHAR, 

 severity VARCHAR, 

 qtRobotId VARCHAR 

); 

 

CREATE TABLE Questionnaires ( 

 patientId VARCHAR, 
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 questionnaireReference VARCHAR, 

 refDat DATE, 

 healthentiaRecordId INTEGER, 

 question VARCHAR, 

 answer VARCHAR 

); 

 

 

CREATE TABLE Physical_Measurements ( 

 patientId VARCHAR, 

 refDat DATE, 

 actMSed INTEGER, 

 actMLight INTEGER, 

 actMFair INTEGER, 

 actMVery INTEGER, 

 actMOv INTEGER, 

 cals INTEGER, 

 distance Double, 

 floors INTEGER, 

 hrRest INTEGER, 

 hrOut INTEGER, 

 hrFat INTEGER, 

 hrCar INTEGER, 

 hrPeak INTEGER, 

 stepNo INTEGER, 

 met Double, 

 slLgtTim INTEGER, 

 slRemTim INTEGER, 

 slDeepTim INTEGER, 

 slWkTim INTEGER, 

 slDurTim INTEGER, 

 wearTim BOOLEAN 

); 

 

CREATE TABLE Exercise_Sessions( 

 patientId VARCHAR, 

 refDat DATE, 

 actTyp VARCHAR, 

 logType VARCHAR, 

 cals INTEGER, 

 actMOvPa INTEGER, 

 actMSed INTEGER, 

 actMLight INTEGER, 

 actMFair INTEGER, 

 actMVery INTEGER, 

 met Double, 

 stepNPa INTEGER, 

 distance Double 

); 

 

8.6 INFINISTORE in Pilot#13 
Pilot#13 is also about personalized insurance services for SMEs. It uses the pilot-specific services to collect 

information from various external sources, it aggregates them and store the information into different table 

defined in INFINISTORE. Then, it uses the datastore to submit analytical queries needed for this pilot analysis. 

The definition of these tables can be found in the following code snippet:  

DROP TABLE IF EXISTS ENTERPRISE; 
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CREATE TABLE IF NOT EXISTS ENTERPRISE ( 

    id VARCHAR NOT NULL, 

    username VARCHAR, 

    created_at TIMESTAMP, 

    clients_uploaded INT, 

    total_clients_uploaded INT, 

    "limit" INT, 

    "language" VARCHAR, 

    logo VARCHAR, 

    parent VARCHAR, 

    current_project VARCHAR, 

    PRIMARY KEY (id) 

); 

 

DROP TABLE IF EXISTS SME_OWNER; 

CREATE TABLE IF NOT EXISTS SME_OWNER ( 

    id_enterprise VARCHAR NOT NULL, 

    id_sme VARCHAR NOT NULL, 

    PRIMARY KEY (id_enterprise,id_sme) 

); 

 

DROP TABLE IF EXISTS SME; 

CREATE TABLE IF NOT EXISTS SME ( 

    id VARCHAR NOT NULL, 

    name VARCHAR, 

    entity_name VARCHAR, 

    address VARCHAR, 

    tax_id VARCHAR, 

    total_sources INT, 

    obtained_sources INT, 

    registered_at INT, 

    ready_at INT, 

    last_update TIMESTAMP, 

    PRIMARY KEY (id) 

    --,DISTRIBUTE UNIFORM FROM VALUES ('SME-00005R2A608O4VIE') TO VALUES ('SME-ZZZXUXO804497N14') 

    --,HASH(id) TO DISTRIBUTE 

); 

 

DROP TABLE IF EXISTS TARGETS; 

CREATE TABLE IF NOT EXISTS TARGETS ( 

    id_sme VARCHAR NOT NULL, 

    source VARCHAR NOT NULL, 

    name VARCHAR, 

    address VARCHAR, 

    tax_id VARCHAR, 

    robot INT, 

    control INT, 

    "language" VARCHAR, 

    region_short VARCHAR, 

    route VARCHAR, 

    route_short VARCHAR, 

    town VARCHAR, 

    street_number VARCHAR, 

    postal_code VARCHAR, 

    PRIMARY KEY (id_sme,source,robot,control) 

); 

 

DROP TABLE IF EXISTS ROBOTS; 

CREATE TABLE IF NOT EXISTS ROBOTS ( 

    id INT NOT NULL, 

    instance VARCHAR, 
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    last_use INT, 

    type VARCHAR, 

    no_return INT, 

    PRIMARY KEY (id) 

); 

 

DROP TABLE IF EXISTS BIGDATA; 

CREATE TABLE IF NOT EXISTS BIGDATA ( 

    id VARCHAR NOT NULL,          -- UUID 

    name VARCHAR,                 -- enterpriseName OR infocif.entity_name 

    entity_name VARCHAR NOT NULL, -- empresarial.socialReason OR infocif.entity_name OR enterpriseName 

    address VARCHAR,              -- location OR address 

    tax_id VARCHAR,               -- "" 

    total_sources INT,            -- 0 

    obtained_sources INT,         -- 0 

    registered_at INT,            -- time_register 

    ready_at INT,                 -- time_ready 

    last_update TIMESTAMP,        -- new Timestamp() 

    json_text VARCHAR,            -- all json text 

    PRIMARY KEY (name,entity_name,id) 

); 
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9 Conclusions  
This document reports the work that has been currently done in the scope of task T3.1 “Framework for 
Seamless Data Management and HTAP”, whose main objective is to provide a seamless way for data 
management across operational and analytical data stores by supporting the Hybrid Transactional and 
Analytical Processing (HTAP). The result of this task consists of the core INFINITECH data management 
platform, the INFINISTORE, which is a central data repository that can store data and provide a seamless way 
for OLTP and OLAP operations, without the need to migrate data from an operational datastore to an 
analytical store using expensive ETLs for data migration. This eliminates the need to keep multiple copies of 
data over various types of stores and additionally allows for analytical processing over live data, and over a 
previous snapshot of the dataset that was taken at the time the ETL was executed. 

This report provides an analysis of the read phenomena that occur according to the isolation level and 
concludes that the organizations in the finance and insurance sectors require higher level isolation, which 
will downgrade the level of parallelism of the concurrent execution of transactions. We decided that the 
traditional two-phase locking mechanism that is implemented by traditional operational data management 
systems will create a bottleneck when mixing operational with analytical workloads and we discussed the 
benefits of relying on the snapshot isolation paradigm for building our transaction engine. 

Based on this decision, we designed the INFNIITECH transactional engine in a manner that is fully scalable in 
order to handle very high rates of transactions. Insurance and finance institutions are expecting very high 
rates of traffic as they have to serve millions of financial transactions per minute or need to take into 
account millions of sensor IoT datapoints. Instead of a monolithic approach, the transactional manager, as 
presented in section Error! Reference source not found., can scale-out its components independently in 
order to handle those high rates. In the cases that a bottleneck can occur due to the fact that some 
components cannot scale-out, a proactive approach and an asynchronous communication strategy have 
been applied that eliminates the potential issue. Therefore, the data management layer of INFINITECH is 
expected to perform better than the traditional operational datastores, as it solves the issues and 
bottlenecks that those stores impose when dealing with the high OLTP workloads that the finance and 
insurance organizations produce. The impact of our design is presented in section Error! Reference source 
not found., where we highlight how the INFINISTORE can scale-out linearly, when other database 
management systems fail and can only achieve partial scalability which is downgraded to a logarithmic level 
or worse. 

Moreover, the OLAP engine of INFINISTORE provides all the standard SQL capabilities that belong to the 
typical analytical datastores and it is compatible with the OData standard, exposes a RESTful API and 
implements the JDBC specification for data connectivity. By doing this, it can be integrated with all popular 
analytical frameworks used by the data analysts for ML/DL activities in the finance and insurance sectors. Its 
engine supports query optimization by transforming the query in order to take advantage of the 
characteristics of its internal storage engine, while it supports the parallel execution of the query statement, 
in order to achieve the same performance as typical analytical datastores. This, combined with the ability to 
perform OLTP workloads on the same data, eliminates the need for the migration of the operational data to 
a data warehouse using expensive ETLs. This enables organizations in those sectors to perform effective 
analysis over real data, thus providing real-time business intelligence to their customers. Towards this 
direction, during the second phase of the project we emphasize the validation of our dual SQL/NoSQL 
interface that allows for data ingestions of highly rated workloads, ensuring transactional semantics provided 
by the OLTP engine. On the other hand, its dual nature allows for transparent integration with all analytical 
frameworks that can open JDBC connections and submit standard SQL statements. 

Finally, at this phase of the project, all pilots have been further developed, which allows the identification of 
common needs among pilots. A common case is the need for sending a stream of data that is being 
generated outside a sandbox, internally by an organization, to INFINISTORE which is deployed inside the 
sandbox. Typical scenarios include streaming data of financial transactions, IoT information and current 
financial rates. To solve these needs, we implemented an INFINISTORE Kafka connector that is now provided 
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by the platform. Section Error! Reference source not found. gives a detailed description of such scenarios, 
including a demonstrator based on pilot#2 that can be used as a guideline for all other pilots supported by 
INFINITECH. Apart from that, as pilots have started providing initial versions of their integrated solutions, the 
INFINISTORE is a crucial component for many of those. Section 8 demonstrates the configuration, 
deployment and usability of the data management layer, along with some more detailed information on its 
adaptation from some of the pilots. This can be used as a guideline for all others yet to integrate 
INFINISTORE for their data management needs  

To conclude, the progress of task T3.1 was in line with the planned timeline and an initial implementation 
had been already provided by the first phase. At the second phase of the project, the HTAP capabilities have 
been supported by the transactional processing that the INFINITECH data management platform offers. 
Moreover, the OLAP engine has been extended in order to improve its internal query optimizer for taking 
advantage of the unique characteristics of the storage level, while the parallel processing is under 
implementation and will improve the overall performance of the analytical queries. In this last iteration of 
this deliverable, a demonstrator of the usage of the INFINISTORE has been provided in order to showcase 
how the results of this task have been currently adapted by the project’s pilots. 

 


