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Executive Summary 
The goal of task T3.3 “Integrated Querying of Streaming Data and Data at Rest” of the INFINITECH project is 
to implement a data framework that can provide a unified manner for accessing data that can be 
considered both streaming and data-at-rest at the same time, while being able to correlate data coming 
from those different types of data sources. This data framework aims to overcome the existing obstacles 
that are observed in current solutions. Even if currently available solutions state that they enable the 
provision of real-time business intelligence (BI), they often provide something near real-time due to the 
inherit limitations of the tools they rely on. The important challenge that the INFINITECH unified query 
framework aims to solve is to provide actual real-time BI that is crucial in a variety of use cases that the 
INFINITECH platform supports, such us real-time risk assessment, transaction fraud detection, money 
laundry, etc. 

The INFINITECH unified query processing framework relies on the Apache Flink, one of the popular 
streaming processing tools, extending it with SQL operators that enables the correlation of streaming data 
with data at-rest, removing the barriers for real-time processing. This correlation is achieved by reading 
data from the platform’s data management layer and performing cost-demanding analytical operations in a 
cost-effective manner that can be used as a streaming operator, or by allowing the data ingestion of 
streaming data to the persistent storage, modifying its content while at the same time, ensuring 
transactional semantics. Towards this direction, this task has exploited the outcomes of other tasks related 
with the data management layer of INFINITECH, among those the ultra-scalable transactional management, 
its incremental analytics and the Hybrid Transactional and Analytical Processing (HTAP) provision, the 
declarative online data aggregations, and potentially the polyglot extensions of the platform. The outcomes 
of those tasks constitutes the basic pillars have been utilized by the operators implemented in the scope of 
this task, which can now allow the unified query processing framework to provide real-time BI. 

This deliverable describes the steps required for the INFINITECH unified query processing framework design 
and implementation. At the first phase of the project, an initial analysis of the state-of-the-art in the field of 
data streaming processing had been conducted in order to decide which of the proposed solutions would 
be better suited to be used as the core of the framework. Based on this decision, an initial design of the 
operators that now extends the proposed data streaming processing was made, which drove the actual 
implementation during the second phase of the project. This was necessary as those operators rely on the 
outcome provided by other technical tasks of WP3 and WP5, leading the implementation to be initiated at 
the second phase of the project (M12-M27). In the second version, the design of the integrated solution of 
pilot#2 took place in order to benefit from the outcomes of the work that was being currently carried out 
under the scope of the task T3.3. In this last version of this deliverable we document the final 
implementation of the operators provided by the INFINISTORE Flink Connector that allows the combination 
of static and streaming data, taking advantage of the outcomes of the technical tasks of WP3 and WP5, 
along with the experimentation with the aforementioned pilot. 
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1 Introduction 
Finance and insurance institutions utilize static data that are persistently stored in a database management 
system, often called as data-at-rest, in order to extract information via analytical tools and AI algorithms 
that rely on historical data. Therefore, their analysis is executed as a batch process, once the tool or 
algorithm is being invoked, relying on the data that are persistently stored in the datastore at that exact 
point in time, which does not always reflect the situation at the same point in time. In addition, as 
explained in D3.1, organizations that utilize Big Data tend to use Extract, Transform, Load  (ETLs) 
periodically in order to move data from their operational datastores to a data warehouse, where they 
perform their analytics. As a result, the latter makes use of a snapshot of the dataset that was taken at the 
specific point in time when the ETL process moves the data to the warehouse. This can pose an issue in 
cases where an enterprise needs to be aware of potential risks or opportunities in order to adapt and 
exploit them at the time when they happen. In the finance and insurance sectors there are many cases 
where the time window to perform an action is narrow and performing analysis on yesterday’s data can 
hinder effective courses of action. Such examples in the finance sector include risk assessment analysis, 
where a financial organization might need to provide detailed risk information regarding the management 
of an asset in real-time, otherwise an investment opportunity could be lost. Another example can be 
noticed in fraud detection mechanisms, where the identification of a fraud transaction must be done 
exactly the moment when the transaction takes place, since analyzing the historical transactions of the 
previous day could prove ineffective. Moreover, in the scope of the insurance sector, taking IoT sensor data 
coming from devices, either from vehicles or from people’s smart phones could prove crucial to occur in 
real time since utilizing historical data could result in losing the opportunity to extract vital information at 
the time that the data are produced. Those scenarios are observed often in financial institutions and the 
insurance sector and pose typical challenges to many of the organizations of these sectors. They are also 
listed as typical user requirements from the pilots of the INFINITECH project, as they have been addressed 
in the corresponding deliverables of T2.1. 

Due to the need of real-time data analytics, streaming processing systems have been widely used during 
recent years. The emergence of IoT, where data are being continuously produced by various sources (either 
a hardware sensor that is physically installed or data generated after an online transaction) has led to 
organizations having different types of streams being accessed by their systems. In order to utilize this new 
types of data, various data streaming infrastructures have been developed that allow application 
developers and data analysts to perform some query processing on top of the stream. In contrast with 
traditional database management systems where data are persistently stored and considered at-rest, 
where queries are submitted dynamically and produce results in a request-response manner, the nature of 
the streaming processing is different. Queries are statically submitted and make use of dynamic data 
(coming from the stream) often called data in-flight, and thus, they are considered continuous. As queries 
are not dynamic, there is no request-response type of interaction, rather than once a continuous query has 
been submitted, it continuously generates results. Queries might be stateless where no previous 
information might be needed. Examples can be found in scenarios where a financial organization needs to 
check if the amount of an online transaction exceeds a specific threshold. In case it does, this event might 
trigger additional actions from the organization to examine the transaction details and potential fraud 
activities. Typically, those queries only require comparison of the current data coming from the stream with 
a static value. However, as data is being processed in real-time, it allows the financial institution to react 
instantly, without having to perform this type of analysis on obsolete data coming from a snapshot taken in 
the past. Additionally, continuous queries might be stateful and require some timestamp information that 
has been collected from data being passed through the stream channel previously. Usually, a time window 
is being maintained that allows for aggregated operations to take place. An example will be to produce an 
alert if the value of a data element coming through the stream is bigger than the average value of all data 
elements that have been passed during the last minute, hour, etc. This reveals potential current trends and 
might be useful in scenarios, for example, where a lot of investors choose to buy a specific stock or other 
investment product, or if clients decide to massively withdraw money from their accounts, or move their 
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money to other products, which might be the case of a bank run due to a potential currency devaluation as 
the global economic crisis that started in 2008 showed. The streaming processing framework calculates the 
aggregated values of money transfer in the last minute or hour and might generate an alert to the financial 
institution in case massive money transfer occurs. It is obvious that if the financial institution had to rely on 
a periodic batch processes using other types of analytical tools on an obsolete dataset, the results might be 
catastrophic for the institution which could face hazardous liquidity issues.  

Those two different types of processing, data at-rest and streaming data, can solve different types of 
problems addressed by the finance and insurance sector. Dynamically submitted queries at data at-rest can 
feed machine learning (ML)/Deal learning (DL) algorithms taking into account all historical data stored in a 
persistent medium like a data warehouse, but cannot record changes or trends happening in real-time. On 
the other hand, static continuous queries can generate events to which an organization can respond 
immediately. However, they can only rely on a narrow time window and cannot take into account the  
existing historical data. One of the current challenges arising during recent years is the ability for query 
processing that involves both worlds: data at-rest and streaming data. This can enable real-time business 
intelligence (BI) where:  

1. streaming processing can be combined with the results of an analytical processing or  
2. streaming data can be directly ingested in a data warehouse, and the AI algorithms can rely on 

fresh data.  

However, both approaches come with their limitations and can only provide near real-time BI due to 
various inherit obstacles. In order to collate streaming processing with aggregate/analytical queries 
targeting data stored in a database, it requires the latter to be executed first, get the result, and compare 
the result with the streaming data element on the fly. However, aggregate and analytical queries on a 
dataset need a scan operation, meaning that the majority of a dataset must be accessed first. Typically, 
these types of queries are costly, and therefore, cannot be used in streaming processing, where the latency 
must be very low. To overcome this inherit obstacle, traditional approaches often cache those results in 
memory and periodically update their values. This breaks however the data consistency, which is of major 
importance in the financial sector, as data is outdated. Ingesting data from a stream to a persistent storage 
and performing analytical queries in the datastore itself, comes with other obstacles. Traditional database 
systems cannot handle such an increased operational workload coming from a data stream, as they cannot 
scale out effectively. Due to this, system architectures either rely on NoSQL database systems, losing 
however transactional semantics and data consistency, or tend to add data coming from a stream to a data 
queue, and then periodically perform batch ingestion on the database. The latter approach leads to the use 
of near real-time BI, while the pilot use cases of INFINITECH aim to go a step beyond and do analytics on 
data, as they arrive.  

The task T3.3 “Integrated Querying of Streaming Data and Data at Rest” aims to solve the aforementioned  
problems: providing a unified framework that allows application developers and data analysts to perform 
analytics considering elements coming from both worlds. This means correlating streaming tuples with data 
at-rest in both ways: reading from a persistent storage and correlating the results with data coming from a 
streaming channel and using data streams to update and modify the contents of a persistent datastore. It 
will use the current advancements in the technology provided by the INFINITECH project, and most 
precisely the ability of its datastore, the INFINISTORE, to support massive data ingestion, its polyglot 
capabilities, and its enablers for advanced analytics: the online aggregates and the incremental analytics. 
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1.1. Objective of the Deliverable 
The objective of this deliverable is to report the work that has been done in the context of the task T3.3 at 
the end of its duration (M27). This report consist of three versions, each one of those extends and modifies 
when necessary the content of this document, following the agile approach for system development and 
aiming to update the solution and implementation with the current trends of the environment as the 
project is progressing. The work that has been done during the first two phases (M03-M20) was mainly 
focused on the experimentation of various streaming processing frameworks that are currently being used 
in the industry, in order to decide which of those engines the INFINITECH unified query processing 
framework will rely on. Based on this preliminary work that was essential for this task, the initial design of 
the data operators that will allow the correlation of data elements from both worlds took place. The 
correlations themselves are relying on the outcomes of the various tasks that are related with the data 
management layer, as their implementations provide the basis for the implementation of the task T3.3 to 
happen.  

In the previous second version of this document, T3.1 (“Framework for Seamless Data Management and 
HTAP”) and T5.3 (“Declarative Real-Time Data Analytics”) had already produced their first prototypes and 
as a result, the implementation of the operators designed in the first version of the this report has already 
started. Therefore, an initial work had been conducted in order to allow the experimentation of the 
outcomes of this task with an actual use case coming from pilot#2 of the INFINITECH project. In this last 
version of this document, the outcomes of T5.2 (“Parallel and Incremental Analytics”) have been also 
delivered, which allowed us to provide the final delivery of the implementation that took place this last 
period and is reported in the last version of this deliverable. It concerns the data operators provided by the 
INFINSTORE to the streaming processing framework that allows the latter to take the full advantage of the 
newly adapted technologies. 

 

1.2. Insights from other Tasks and Deliverables 
As the majority of the deliverables of WP3, the work that is reported in this document is based on the 
overview description of the corresponding task T3.3, which has been further specified in more detail at 
WP2, which is the fundamental work package that defines the overall requirements of the whole platform. 
T2.1 defines the user stories of the pilots that drive the necessity of this task, while T2.3 defines the 
specification of the overall technologies that INFINITECH provides and need to interact with the unified 
query processing framework. T2.5 describes the available datasets that need to be tackled by this 
component while T2.7 puts the component under the general context of the INFINITECH Reference 
Architecture. Regarding the technical tasks of the project, T3.3 is relying on scalable transactional 
processing of the INFINITECH data management layer, as described in the corresponding deliverables of 
T3.1, along with the Hybrid Transactional and Analytical Processing (HTAP) capabilities that this task 
provides. Moreover, as explained in the corresponding deliverables of T3.2, the polyglot processing is an 
extension of the data management layer, and therefore, this task can exploit its outcomes in order to 
correlate streaming data with data stored in external data sources, in the case of scenarios where data 
cannot move inside the deployed INFINITECH sandbox. In addition, T3.3 will also exploit the outcomes of 
T5.3 and its declarative live aggregation mechanisms that will allow the execution of cost-demanding 
aggregation operations with O(1) complexity, and hence, making it possible to correlate streaming data 
with this type of information. Moreover, with the latest advancements of T5.2, this task will exploit the 
provision of incremental analytics currently adapted by the INFINISTORE to allow the streaming processing 
framework to submit un-bounded queries that can return results in a new data stream that can be further 
processed by the streaming framework.  Finally, T3.3 provides valuable input to T3.4, whose scope is to 
provide automated parallelization of data streams that will rely on the operators implemented in this task. 
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1.3. Differences with the previous version of this report 
The main difference of this last version of the deliverable with the previous one is the addition of the 
Incremental Analytics subsection of chapter 4, where we document an additional INFINITECH enabler or the 
integrated query processing. This allows for the submission of un-bounded query statements to the 
INFINISTORE, whose result can be now retrieved over a data stream. Moreover, in this last version we 
include chapter 6 that provides all the design and implementation details of the proposed INFINISTORE 
Flink connector that has been developed during this last phase of the task. An additional subsection 
demonstrates its use via the documentation of various test cases that have been created to validate its 
functionality. Finally, we have extended the section that states the conclusions to also include how the 
outcomes of this task have accomplished its objectives the relevant KPIs of the INFINITECH project, as 
defined in the DoA. 

 

1.4. Structure 
This document is structured as follows: Section 1 introduces the document and section 2 provides concrete 
examples on how the outcomes of T3.3 can be utilized by the pilots of the INFINITECH project. Then section 
3 provides the state-of-the-art analysis of existing solutions for complex event processing and data 
streaming frameworks, highlighting the existing barriers of those solutions to provide real time business 
intelligence. Section 4 analyses how the technological achievements of INFINITECH can be used as enablers 
to overcome those barriers. This section has been extended in this last version of this document to include 
the newly delivered advancements of the incremental analytics that are now used by the integrated 
streaming processing framework.  Based on the output reported in previous sections 3 and 4, section 5 
describes the design of the SQL operators that will be implemented in order to extend the streaming 
processing framework to correlate streaming data with data at-rest.  

An additional section 6 is now included in this last version of the report, documenting the implementation 
of the project’s streaming connector that includes all operators that had been previously designed in the 
previous phases of the project. It describes its core, its sink and source part, how it allows the streaming 
processing framework to push operations down to the storage engine, along with a demonstrator of its use. 

Section 7 now provides an illustration of how the outcomes of the task T3.3 would add value with respect 
to a specific INFINITECH Pilot, pilot#2, and how the latter can benefit from technology and innovation that 
is being created from the work that is being currently carried out under this task. 

Finally, section 8 concludes the document and addresses next steps. 
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2 Relation with INFINITECH use case scenarios 
In the fast-moving financial domain, it is critical to maintain up-to-date analytics over financial markets. 
Such analytics are used by a wide range of both human and AI traders continuously throughout each day. 
However, in practice, these analytics are not as simple as tracking a stock or share price. Instead, more 
complex metrics are needed that compare real-time market changes with long-term historical trends, 
whilst also incorporating the current position/exposure of the individual trader. For example, for the 
purposes of Pilot#2 (“Personalized Retail and Investment Banking Services”) a common metric used by 
financial traders around the world is Value at Risk, which measures the potential risk of the trader’s current 
investments by analysing the variance of the associated assets over different time horizons (that can 
involve years’ worth of data points). 

Metrics like Value at Risk raise a number of computational challenges, as they require both real time 
market data streams (data-in-flight) to remain current, but also need large quantities of historical data 
(data-at-rest) to provide meaning in context. Decades of research into stable database solutions have 
produced a range of good quality products to manage data-at-rest, including MongoDB, MySQL, 
PostgresSQL, LeanXcale, among others. Meanwhile, although less mature, a number of streaming platforms 
for processing data-in-flight have been under development over the last 10 years, such as Apache Storm or 
Apache Flink. However, the architectures of such databases and streaming platforms are very different and 
are not designed to be compatible. Hence, developing applications that require seamless integration of 
both databases and streaming platforms is very difficult and requires significant specialized expertise. 

Task 3.3 in general aims to make such integration easier for the applications within the financial domain, by 
producing a framework for orchestrating the aggregation of data-in-flight (streaming data) and data-at-rest 
(i.e. historical data within an SQL database).   

 

2.1  Problem Dimensions 
It is first worth noting that there is a large space of possible ways that an application developer might want 
to aggregate data-in-flight with data-at-rest. For example, a streaming select involves taking each item that 
arrives on an input stream and performing a SQL SELECT operation for that item, before sending both the 
item and the query return on an output stream. Meanwhile, a windowed timeseries function involves 
periodically performing a local analytics function on a small streaming data window, writing the result to a 
database, and then retrieving the window timeseries for a longer time period to calculate an aggregate 
measure. Furthermore, the appropriate solution will also be based on a range of environmental factors, 
such as whether it is possible/desirable to continuously store the incoming data streams, the available 
compute capacity that can be allocated to each individual stream, along with expected storage and 
network latencies. Hence, to better organize T3.3, we structure the problem along the following 
dimensions: 

Table 1: Problem Dimensions 

Dimension Value Description 

Processing Type Per-Item The user is looking to augment an item that has 
arrived on a stream with associated data in a 
database 

Windowed The user is looking to perform calculations over 
a series of time windows, where a subset of 
those windows is stored in a database 

Outcome Writing True Once the calculation is finished, the outcome 
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needs to be stored in a database 

False The calculation is read-only on the database 

Stream Writing True The raw contents of the data stream will be 
stored in a database 

False The stream contents are not stored 

Computation Locality Streaming Platform All significant computation is performed within 
the streaming platform (the database is used 
only for basic data lookup)  

Streaming Platform 
& Database 

Computation is shared between the streaming 
platform and database 

 

Importantly, developing a technology that is able to solve all dimension combinations is out of the scope of 
T3.3. Instead, we focus on a sub-set of dimension combinations that align with the INFINITECH pilots that 
require such a technology, which we discuss in the next section. 

 

2.2  The Case of Real-time Risk Assessment in Investment Banking 
 

The high-level aim of this case, which is further analysed in Pilot#2, is to provide bank traders real-time 
information about financial assets they may wish to trade, ultimately enabling improved decision making 
and hence profit margins for their customers. Currently, trading information and future predictions are 
updated infrequently (once a day), meaning that traders are unable to exploit rapidly changing market 
conditions. This case should solve this issue by providing a solution that can aggregate market data, trends 
and provide predicted risk/yield estimates that update in real-time. 

Within the wider trading platform that this case supports, one component that requires data-in-flight and 
data-at-rest to function is asset risk estimation. The goal of this component is to monitor the stream of 
financial asset costs and the current exposure of the trader to those assets (i.e. how much the trader has 
invested), and then calculates a range of risk metrics. This is used to help traders track the short and long-
term risks of particular investments or their broader portfolio.    

To illustrate, we will use the example of one very common metric, Value at Risk (VaR). The aim of VaR is to 
determine the potential loss for an asset and the probability that the loss will occur. The primary input to 
VaR is the return on an asset (how profitable it is) over time. This is expressed by a very large numerical 
timeseries spanning millions of data points per year for each asset. This is combined with various 
parameters, such as the target time period to calculate VaR over, as well as the current exposure of the 
trader. The calculation of VaR (and similar metrics) is costly, particularly when calculating for long time 
periods with high datapoint counts, or if performing a significant forward projection. Moreover, if the 
underlying return for an asset changes rapidly, then the trader will want to be notified of the increased VaR 
(i.e. estimated risk) with very little latency, such that they can take remedial steps. However, constantly re-
calculating VaR from first principles for potentially hundreds of thousands of assets is not feasible. 

On the other hand, it is possible to substantially reduce the cost of the VaR calculation through incremental 
calculation of its constituent components (the mean and standard deviation of the asset return timeseries) 
across smaller time windows. This can be achieved using a streaming platform that buffers datapoints into 
fixed time windows and triggers processing once each window is full. However, a streaming platform itself 
cannot safely store the resultant intermediate outcomes as they are designed to be stateless. Hence, the 
intermediate outcome from each window needs to be stored into a database and made accessible such 
that VaR can be rapidly calculated for a target time period. The challenge then from the database side is to 
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provide sufficiently fast writes for the new windows as they are created, while also enabling very low-
latency querying of the stored window data for each asset such that VaR can be re-calculated for tens of 
thousands of assets minute-by-minute. 

Figure 1 illustrates the structure of this process for FX assets (currency trading) when combining data-in-
flight and data-at-rest. As we can see, a high-volume data stream of currency prices continually arrives at 
the left hand side, comprised of <asset, timestamp, value> tuples. This stream is then sub-divided into one 
stream per-asset. The streaming platform will then buffer the updates for each currency price into fixed 
time windows (in this example a 5 minute window length). Once the buffer period has elapsed, a trigger 
starts the calculation of the intermediate components needed for VaR, i.e. the mean and standard 
deviation of the updates within the window, that are then stored within a database. Depending on the 
desired variants of VaR the user wants, the required window data is loaded from the database and those 
variants of VaR are calculated and then emitted for downstream consumption by the user. 

 

 

Figure 1: Example of the VaR calculation process for FX data streams 

 

Considering the dimensions discussed earlier, this is a windowed process, i.e. it relies on intermediate 
calculation over time windows, and the computation is primarily performed within the Streaming Platform. 
Meanwhile, calculation outcomes are being written (means and standard deviations), but the raw stream is 
not.  

This is a proposed solution for a general case application coming from the insurance sector targeting risk 
assessment analysis in real-time. However, we designed it in a more generic manner in order to apply the 
same patterns to other scenarios coming from both the insurance and finance sector. INFINITECH has 15 
pilot cases, where many of them require streaming processing technologies, as identified in the user stories 
provided by T2.1 Therefore, we will take advantage of those pilots during the evaluation phase to verify if 
the proposed framework that we present in this deliverable can be beneficial to them. 
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3 State-of-the-Art Analysis on Data Streaming 
Technologies and Complex Event Processing 

Big data analytics is a key area for businesses and the public sector alike, enabling the analysis of huge 
amounts of data to draw business insights and discover new, innovative ideas, technologies and solutions. 
By utilizing big data analytics and artificial intelligence, businesses and organizations can support their BI, 
adopting new data driven decision-making tools and shifting strategic planning processes. 

The data collected by the various systems day by day are rapidly increasing and that makes it difficult to 
store them in known relational and non-relational business’ databases but also, to apply data mining tools 
and techniques directly on big data streams. Thus, nowadays it seems that streaming data processing, the 
technology that started to develop more than 20 years ago, has a greater value than ever. In 1992, the 
Tapestry system has introduced the notion of streaming queries, and by then, various technologies of 
streaming processing have been developed per generation of streaming systems. 

 

3.1  Data Streaming Technologies and their Generations 
Starting with the first generation, the applications that have been developed in the early 00s used 
centralized stream processing engines such as Stream [1], Aurora [2] and TelegraphCQ [3]. These engines 
provided window-based query operators that execute continuous queries over relational data streams. 
While these engines supported principled relational query models, e.g. as proposed through the 
Continuous Query Language (CQL) [4], they lacked support for parallel data processing, making them 
inapplicable in Big Data scenarios.  

With the increase of stream rates and query complexity, a second generation of stream processing engines 
became distributed in order to harness the processing power of a cluster of stream processors. Systems 
such as Borealis [5], Gigascope [6], and InfoSphere Streams [7] permit inter-operator parallelism for 
continuous queries, that is, one query can be executed on multiple machines. Such systems exploit task-
parallelism, i.e. they execute different operators on different machines and allow the execution of many 
different continuous queries in parallel. InfoSphere Streams supports intra-query parallelism through a 
fine-grained subscription model, which specifies stream connections, but management is manual.  

As a result, the third generation of stream processing engines focus on intra-query parallelism, parallelizing 
the execution of individual query operations. StreamCloud [8], Apache S4 [9] and Storm [10] express 
queries as directed acyclic graphs with parallel operators interconnected by data streams. StreamCloud 
parallelizes stateful queries at runtime also providing intra-operator parallelism. It uses a query compiler to 
synthesize high-level queries into a graph of relational algebra operators. StreamCloud also provides 
elasticity. It uses hash-based parallelization, which is geared towards the semantics of joins and aggregates. 
S4 schedules parallel instances of operators but does not manage their parallelism. Storm allows users to 
specify a parallelization level and supports stream partitioning based on key intervals, but it cannot scale 
out the computation at runtime. This makes it hard to support unknown Big Data analytics tasks when the 
computational expensive of operators is not known beforehand. Schneider et al. [11] adds elastic operators 
to the SPADE language, which gradually finds the optimal number of threads for stateless processing with 
maximum throughput. Spark Streaming [12] parallelizes streaming queries by running them on the Spark 
distributed dataflow framework using micro-batching. With micro-batching, the streaming computation is 
executed as a series of short-running Spark jobs. Each Spark job outputs incremental results based on the 
most recent input data. A limitation of such an execution model is that it makes it challenging to support 
arbitrary window semantics for continuous queries and in particular sliding windows. The Stratosphere 
project [13] has developed a distributed dataflow framework that can execute data-parallel batch and 
streaming processing jobs on the same platform. Computation is described as dataflow graphs, which are 
optimized using existing database techniques. The results of the Stratosphere project were made available 
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through the open-source Apache Flink [14] platform now exploited by the German startup Data Artisans 
and the only competitor to Apache Spark made by the American startup DataBricks. All the above platforms 
assume that stream processing operators are stateless, which simplifies scalability and failure recovery. 
However, this means that streaming queries cannot express complex analytic tasks such as data mining and 
machine learning algorithms that incrementally refine a model.  

To address this problem, the fourth generation of stream processing engines adopt a stateful stream 
processing model. Platforms such as Apache Samza [15] and Naiad [16] execute streaming operators in a 
data-parallel fashion while allowing operators to have access to mutable in memory state. For example, the 
state of a continuous query can be a machine learning model that is trained with new incoming data. These 
stateful stream processing platforms therefore support the execution of analytical applications that 
maintain historic data while continuously processing new data. Some of these fourth-generation streaming 
engines rely on the concept of Stateful Dataflow Graphs (SDGs) [17]. An SDG contains vertices that are 
data-parallel stream processing operators with arbitrary amounts of mutable in-memory state, and edges 
that represent the stream. SDGs can be executed in a pipelined fashion so to have a low processing latency. 
All operators are assigned to machines in the cluster and the parallelization level for each operator is 
automatically decided by the system. 

Today, some of the top tools often used for real-time data streaming processing are Apache Storm, Apache 
Spark, Apache Flink, Amazon Kinesis [18], Apache Samza and IBM InfoSphere Streams. Below is an 
extended analysis of these tools. 

 

3.1.1  Apache Storm 

Built by Twitter, Apache Storm [10] specifically aims at the transformation of data streams and it is useful 
for ETL, online machine learning, continuous computation, and many other things. The foremost capability 
of Apache Storm is faster data processing that can carry out processes at the nodes with faster data 
processing than other tools do, combined with very low latency. However, Apache Storm is known to have 
a few drawbacks such as that it is only suited for data which are ingested as one entity and it cannot 
guarantee that the data will be processed only once, and thus may compromise reliability.. 

 

3.1.2  Apache Spark 

Spark [12] is an general-purpose distributed cluster computing framework. It is known for its in-memory 
processing capabilities where its engine conducts analytics, ETL, machine learning, and graph processing on 
data in motion or at rest. It is not actually a real-time system, but it processes in the micro-batches at a 
defined interval. It offers high-level APIs for different programming languages and when it has some 
latency, which eliminates some real-time analytics use cases, it makes sure that the data is processed in a 
trustworthy manner.  

3.1.3  Apache Flink 

Flink [14] is based on the concept of streams and transformations and is like a hybrid between the Spark 
and Storm, providing frameworks for both streaming and batch processing, approaching batches as data 
streams with finite boundaries. This allows Flink to be low latent while also exhibiting the data fault 
tolerance of Spark. It can also have several user-configurable windowing and redundant settings in order to 
support user configuration. In addition, Flink also implements Apache Beam, which is the contribution of 
Google to enable real-time processing. Some other benefits that Flink offers are: 

• Stream-first approach which offers low latency and high throughput. 

• Real entry-by-entry processing. 
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• Does not require manual optimization and adjustment to data it processes. 

• Dynamically analyses and optimizes tasks. 

• It is a continuous stream processing operator. 

However, Flink has some scaling limitations. 

 

3.1.4  Amazon Kinesis 

Amazon Kinesis [18] is a robust managed service that is easy to set up and maintain which allows streaming 
Big Data with Amazon Web Services (AWS). In fact, it is a cloud-based service that has the capability to do 
real-time data streaming and processing. It helps to analyse the real-time data, scaling according to the 
different requirements. One of the most crucial traits of Amazon Kinesis is flexibility that helps enterprises 
start initially with basic reports and insights on data. Subsequently, with the growth of demand, Kinesis can 
help in the deployment of machine learning algorithms to support in-depth analysis. However, the fact that 
it is a commercial cloud service, priced per hour, makes some enterprises to conclude to other free and 
open-source solutions. 

 

3.1.5  Apache Samza 

Apache Samza [15] is considered one of the best real-time stream processing frameworks. It is designed to 
match with the unique architecture of Kafka, another real-time data streaming tool, and it guarantees any 
kind of fault tolerance. Apart from just fault tolerance, it can also work against buffering and state storage. 
Samza also has great scalability and is distributed on all levels, managing things like snapshotting and 
restoration of the stream processor’s rate. Nevertheless, Samza does not offer any reliability and recovery 
accuracy.  

 

3.1.6  IBM InfoSphere Streams 

InfoSphere [7] Streams is designed to uncover meaningful patterns from information in motion (data flows) 
during a window of minutes to hours, as it is a full CEP system, as opposed to the aforementioned tools. 
The platform provides business value by supporting low-latency insight and better outcomes for time-
sensitive applications, such as fraud detection or network management. InfoSphere Streams also can fuse 
streams, enabling to derive new insights from multiple streams. The main design goals of InfoSphere 
Streams are to: 

• Respond quickly to events and changing business conditions and requirements. 

• Support continuous analysis of data at rates that are orders of magnitude greater than existing 
systems. 

• Adapt rapidly to changing data forms and types. 

• Manage high availability, heterogeneity, and distribution for the new stream paradigm. 

• Provide security and information confidentiality for shared information. 
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3.1.7  Brief Comparison of Analysed Data Streaming Tools 

The following table presents a brief comparison between the tools previously analysed in terms of their 
capabilities and how they work. In particular, the comparison fields are the execution model that they 
follow, the workload which is if they are CPU or memory intensive, where the latter implies that the main 
performance bottleneck at higher load conditions will be due to lack of memory. Also, fault-tolerance, 
latency and throughput are some other fields that have been used for the comparison, along with their 
application domain or areas. 

 

Table 2: Comparison of Data Streaming Tools 

Tool 
Execution 

Model 
Workload Fault tolerance Latency Throughput Application 

Apache 
Storm 

Streaming CPU / memory 

intensive 

Replication, checkpoint, data 
recovery, upstream backup, 
record-level acknowledge-
ment, stateless management 

Very low Low Internet of things, strea-
ming machine learning, 
multimedia analysis 

Apache 
Spark 

Batch, 
Iterative, 

Streaming 

CPU / memory 

intensive 

RDD based check-pointing, 
parallel recovery, replication 

Low High Event detection, strea-
ming machine learning, 
fog computing, interactive 
analysis, multimedia 
analysis, cluster analysis, 
filtering, re-processing, 
cache invalidation 

Apache 
Flink 

Streaming, 
Batch, 
Iterative, 

Interactive 

Memory 

intensive 

Stream replay 

and marker-checkpoint 

Very low High Optimization of  

e-commerce search result, 
network / sensor 
monitoring and error 
detection, ETL for business 
intelligence infrastructure, 
machine learning 

Amazon 
Kinesis 

Streaming, 
Batch 
processing 

Memory 

intensive 

Checkpoint Very low High Real-time dashboards / 
businesses / operational 
decisions, exceptions 
capturing, alerts gene-
ration, recommendations 
driving 

Apache 
Samza 

Streaming, 
Batch 
processing 

Memory 

intensive 

Checkpoint Very low High Filtering, re-processing, 
cache invalidation 

IBM 
Infosphere 
Streams 

Streaming 

 

Capture data-
base workloads 
and replay 
them in a test 
database 
environment 

Automatic recovery Low High Space weather prediction, 
physiological data streams 
analysis, traffic manage-
ment, real-time 
predictions, event 
detection, visualization 
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4 INFINITECH Enablers for SQL Operators over 
Streaming Data  

As indicated the previous section, modern streaming processing frameworks nowadays provide the ability 
to correlate data at-rest with data coming from a streaming channel. They offer a variety of operators that 
enables a data analyst to apply processing methods on the stream, using either CEP built-in functions or 
high level data frames. In the latter case, streams are transformed into unbound virtual tables that can be 
consumed by SQL-alike operators, or other operators. This level of virtualization of the data, allows for 
streams to be expressed as tables, and thus, being correlated with static data that are also expressed in 
tabular format. The sources of the static data can vary from static files, to database management systems 
and other sources of persistent storage. All those have to implement a specific connector in order for the 
streaming processing framework to be able to retrieve and store data to the target source.  

Although the ability for correlating static data with a streaming process is not novel, there are various 
barriers that prevent those frameworks from delivering real-time BI. Those limitations are usually 
introduced by the persistent storage elements, which are either unable to handle data ingestion in very 
high rates, or they can insufficiently execute data retrieval operations, due to the high latency that a scan 
operation requires. Regarding the latter case, a typical scenario can be to compare a streaming tuple with 
an aggregated value: For instance, the value of a finance transaction might need to be checked against the 
overall average of finance transactions that have taken place during the last defined period of time. 
However, this operation requires firstly a scan of a data partition, which typically is costly. In order to 
overcome this, usually there are two approaches: The first one is to cache this value, with the drawback 
that the average value is not consistent, which is not acceptable in use cases coming from the finance 
sectors. The second approach is to create a virtual table with the target dataset and apply the aggregation 
in memory. This has two benefits: It is much more effective, as all calculations take place in memory, which 
is less time consuming, and, continuous updates and data modifications can be applied to the common 
shared dataset. However, restrictions on the overall size of the memory of the dataset and insurance of the 
transaction semantics are a significant drawback. 

Regarding operational workloads, modified data arriving in high rates must be stored in a persistent 
volume. Traditional database management systems usually are incapable to handle these loads, due to the 
enforcement of transactions. As the rates goes high, the transactional management subsystem of the 
database needs to scale out, in order to serve these loads. However, the distribution of transactions is hard 
to be achieved, as the traditional implementations make use of the two-phase-locking protocol, which 
cannot be distributed by design. To make things worse, operational workloads cannot be combined with 
analytical processing, as the one blocks the other. To overcome this problem, data ingestion is targeting 
operational datastores, while ETLs are used to periodically move data to a data warehouse. By doing this, it 
is possible for a streaming processing framework to ingest data to one datastore element and use the data 
warehouse for analytical operations. As data in the warehouse are added periodically by the execution of 
the ETL, the data can be considered as non-modified, can be cached in memory of the streaming engine. 
This leads to have a near real-time BI, as the processing takes into account a snapshot of the dataset that 
has been retrieved in the last invocation of the ETL. This is often not enough in modern cases coming from 
the finance sector, where real-time identification of potential opportunities or mal-detections is the 
requirement.  

As it can be concluded, it is hard for a data analyst to make use of a streaming processing framework in 
order to correlate static and streaming data for real-time analytics. Towards this direction, the INFINITECH 
platform provides enablers that can be used in order to overcome those obstacles. As a result, instead of 
using virtual or materialized views over a dataset that allows the execution of table functions and SQL 
queries over correlated streaming data and data at-rest, while at the same time apply possible data 
modifications on the view, the whole architecture can be much more simplified: we can have the direct use 
of a data table of the data management layer. The latter can allow for the streaming framework to delegate 
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the requirements for data consistency to the database. The data management layer offers specific enablers 
that aim to overcome the obstacles introduced by the need for persistent storage. 

 

4.1 Hybrid Transactional and Analytical Processing 
The provision of Hybrid Transactional and Analytical Processing is at its core of the overall data 
management layer of INFINITECH. As it has been reported in the corresponding deliverables of task T3.1 
(“Framework for Seamless Data Management and HTAP”), the purpose of this enabler is twofold: Firstly, it 
allows for the combined execution of operational and analytical workloads, which is crucial when there is 
the need for real-time business intelligence. This removes the necessity for moving data from the 
transactional datastore to a data warehouse. It is based on the removal of all data locks that are needed by 
traditional implementations to enforce data consistency on transactions that are being executed in parallel. 
The lack of data locks allows for an analytical operation to perform a scan over the whole dataset (which is 
typically the case when we need to calculate an aggregated value) without being blocked by data 
modification operations that put the locks. That way, the data analyst or application developer does not 
have to create and maintain in memory specific virtual or materialized views, which are used by the 
streaming frameworks to share this information across streaming sessions, and delegates this responsibility 
to the lower layer that has been designed to serve this. In addition, the need to maintain the state across 
sessions and share it across the different deployment nodes is removed, along with the restriction for the 
size of the view due to memory limitations of the deployment. 

Complementary to the above is the ability of the INFINITECH data management layer to handle very high 
rates of data ingestion. Due to its highly scalable transactional management system, it can be scaled out 
linearly to hundreds of nodes. As a result, it can serve hundreds of thousands of transactions per second, 
without being a bottleneck. This innovation of the platform allows the ingestion of data to be handled on 
the runtime, avoiding the need to push the incoming data for a temporal persistent and fault-tolerant 
queue (e.g. Apache Kafka). The approach that involves a data queue demands a consumer process that 
periodically gets data from the queue and puts them to the persistent storage in a batch. As a result, data 
are being ingested periodically in micro-batches, and this design downgrades the real-time processing to 
near real-time. 

 

4.2 Online Aggregations 
Another obstacle that appears when correlating streaming data with data at-rest is the need to combine 
the value of a tuple coming from the streaming channel with an aggregated value of the data already 
stored. Requesting the min/max/average value of a dataset to be used in a later comparison firstly requires 
the scan of the data table in order to retrieve the aggregated value. Having the dataset in a persistent 
storage will require lots of I/O operations to that volume, which is time consuming with a significant 
latency. To overcome this problem, data are being cached into memory where this value has been pre-
calculated in advance. The drawback of this technique is in the case of datasets that are being modified 
frequently; we lose the data consistency, as the aggregated value will be outdated. Materialized views are 
usually used to deal with this requirement; however, each aggregated operation has to be calculated again 
each time the dataset is being modified. Even if this calculation takes place in memory, introducing serious 
barriers regarding the overall size of the dataset, it is computational intense. INFINITECH provides the 
ability to execute online aggregations, which means the value can be retrieved online at runtime. In 
contrast with the need for a scan operation and the calculation of the aggregated value by calculating all 
involved records, INIFINITECH’s data management layer maintains an additional record for each involved 
value. The calculation is being performed on the fly, as a new record arrives. Instead of having to check the 
value of each record of the scan, the platform relies on delta operators that have been implemented in the 
scope of task T5.3 (“Declarative Real-Time Data Analytics”). As a result, the value has been pre-calculated 



D3.8 – Data Streaming and Data at Rest Queries Integration - III 

H2020 – Project No. 856632   © INFINITECH Consortium           Page 20 of 50 

and the complexity for data retrieval is only O(1), which is the minimum we can get. Furthermore, being 
already integrated with the transactional management component of the platform, it is ensured that the 
value is consistent in terms of transactional semantics. This will remove the necessity for the streaming 
processing framework to maintain such expensive in terms of resource usage and time consuming views, 
and downgrades this to the lower layer. More details regarding the implementations of the online 
aggregators can be found in the corresponding deliverables of T5.3. 

 

4.3 Polyglot Capabilities 
We can consider a third obstacle, the necessity to correlate static data coming from different data sources. 
Most of the streaming processing frameworks implement a variety of join operators that can be used to get 
data from various sources and correlate the results between them and among streaming channels. 
However, a join operator usually requires to get into memory a significant amount of data that needs to be 
used for the outer operator of the operation itself. INFINITECH’s polyglot component can be used instead, 
so that the data analyst and application developer can write a simple select-from statement to get the 
corresponding result set. By doing this, she pushes down to the data management layer of INFINITECH the 
execution of this join, removing the need from the streaming processing to maintain all data in memory. As 
explained in the corresponding deliverables of T3.2 (“Polyglot Persistence over BigData, IoT and Open Data 
Sources”), the polyglot component can receive a query written in a common language and execute this in 
the various target datastores. As a result, the retrieval of the static data becomes more transparent, as this 
is being delegated to another component, letting the streaming engine to only correlate the streaming data 
with the result. 

 

4.4 Incremental Analytics 
Based on the advancements on the work that has been carried out under the scope of task T5.2 
(“Incremental and Parallel Data Analytics”), a forth enabler that has been developed in INFINITECH can be 
now exploited by our streaming processing framework. This is the provision of incremental analytics that 
has extended the base functionalities of INFINISTORE. Using the incremental analytics, the data user or 
application developer can submit a continuous or un-bounded query statement to the datastore that will 
be validated for a given duration of time (or for infinite) against the dataset that changes its state 
continuously. As data is being ingested to the datastore, all incoming tuples will be checked whether or not 
they validate the submitted query, and if yes, an updated row (or number of rows) will be returned. This 
mechanism is now documented in D5.3 (“Library of Parallelized Incremental Analytics – III”). In summary, 
when the data user or application developer wants to submit an un-bounded query, he or she needs to 
open a database connection to submit the query, and he or she will be returned an iterator object to gather 
the results. In the case of un-bounded queries, this iterator never stops, but instead, waits for new records 
to become available from the storage engine of INIFNISTORE. With the use of incremental analytics, the 
data user can submit aggregation operators (i.e. the average of financial transaction movements per credit 
card per time period), and will get updates of this results each time new records are available and ingested 
in the datastore. This means that in practice, the open iterator creates a stream of data that can be 
consumed by the data users. Having this, it will allow the streaming processing framework to handle the 
results of the incremental analytics as an external data stream using materialized views defined by the data 
user. In fact, the INFINISTORE, as the data management layer of INFINITECH, can ensure data stream with 
consistent data, already pre-processed and aggregated with no latency, as all these operations takes place 
in the datastore itself. Therefore, the result is that the data analyst can push down all this complex 
processing down to the INFINISTORE, and let the latter create a streaming data to be handled by the 
streaming processing framework. He or she write SQL statements using relational algebraic operations, to 
be processed in the datastore, and consume or combine the output as a stream. Having the incremental 
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analytics embedded into the INFINISTORE and accessed via its direct API, then it can be integrated with the 
streaming processing framework, the same way as the other three enablers are. 
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5 INFINITECH streaming engine overview and design 
of operators  

After performing an intensive state-of-the-art analysis of existing solutions regarding frameworks for 
streaming processing, which can be found in Section 3, we decided to use the Apache Flink as the basis for 
the INFINITECH unified query processing framework, as it offers a variety of characteristics and 
functionalities that can be useful for the platform. It provides two different APIs for correlating streaming 
data with data at-rest which transforms streams and external persistent data into tabular formats that can 
be used by the various data operators. The provided Table API and SQL API can be used for static data and 
can be used in conjunction with the DataStream and DataSet interfaces. 

Apache Flink provides two manners for processing: a language-integrated query API and the ability to direct 
execute SQL statements. The former provides a set of available methods that can be invoked and can 
compose a pipeline of relational operations in an intuitive way and returns an equivalent result compared 
to a normal SQL execution. It supports common SQL operators such as selections, projections, filters, 
aggregations etc. The latter manner requires the compilation of the SQL statement to an execution plan 
that will be applied. The compilation makes use of Apache Calcite [21].  

There is one significant difference however between those two ways for accessing static data: Using SQL 
operators, the whole dataset needs to be available to the streaming engine, where the latter applies the 
query plan in memory and returning back the results. The only exception is for SQL-compatible data 
management systems, where the whole query can be pushed down to the source via a Java DataBase 
Connection (JDBC) connection. In fact, in those cases, it is the database itself that takes care of the 
execution of the statement and returns back the result set, which will be further transformed to a tabular 
format, thus initializing a Table instance of the corresponding API. In all other cases, the dataset has to be 
fetched first from the source, and the execution plan needs to be handled by Flink in memory. An 
alternative approach is the implementation of specific connectors that can be used by the streaming engine 
using the language-integrated query API. As mentioned before, the query API provides various relational 
operations such as selections, projects etc, and the connector implements those operators for data access. 
As a result, the dataset does not have to be loaded in memory. Instead, those operations are being 
executed in the target datastore which filters out records and returns the results.  

The INFINITECH data management layer is SQL-compatible and implements the JDBC specification. 
However, this requires the invocation of the query engine that introduces an inherit overhead due to its 
footprint, while on the same time, does not take the fully advantage of the recent enablers of INFINISTORE 
developed under the scope of this project during its last phase. Due to this, we now provide an 
INFINISTORE Flink connector, which implements all operations supported by Flink for unified stream and 
batch processing. The benefit is twofold: firstly, it allows for direct access to the storage engine of the 
platform, bypassing the footprint introduced by the query engine, and as a result, can support data 
ingestion in even higher rates. What is more, the direct API of the data storage of INFINITECH has been 
designed to support the distributed execution of aggregated operations. As a result, these types of 
operations can be pushed down to the storage for efficient data retrieval. The following sections provide 
information about the initial design of integration of the streaming engine of Flink with the INFINITECH data 
management layer via those operators. 

 

5.1 Basic Concepts 
The Table API of Apache Flink has as its central concept the Table which serves as the input and output of 
operations: an operator that performs a project will take as input an instance of a Table and will return the 
projected result in another instance of a Table. Tables can be either permanent or temporary. The former 
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allows to be visible across several sessions that might be span across different nodes, while the latter is 
only visible during the lifecycle of a single session. 

In order to create a table, there are two different ways: one is to use the native API that allows you to use 
the language-integrated query, which composes the operators by using native language, or by using an SQL 
statement and pass the query string to the framework. The following code snippet shows how to construct 
a table with the native API. 

 

// create a Table 

tableEnv.connect(...).createTemporaryTable("Orders"); 

 

// scan registered Orders table 

Table orders = tableEnv.from("Orders"); 

 

// compute revenue for all customers from France 

Table revenue = orders 

  .filter($("cCountry").isEqual("FRANCE")) 

  .groupBy($("cID"), $("cName") 

  .select($("cID"), $("cName"), $("revenue").sum().as("revSum")); 

 

While this code snippet produces an equivalent result, using an SQL statement: 

 

// create a Table 

tableEnv.connect(...).createTemporaryTable("Orders"); 

 

// scan registered Orders table 

Table orders = tableEnv.from("Orders"); 

 

// compute revenue for all customers from France 

Table revenue = tableEnv.sqlQuery( 

    "SELECT cID, cName, SUM(revenue) AS revSum " + 

    "FROM Orders " + 

    "WHERE cCountry = 'FRANCE' " + 

    "GROUP BY cID, cName" 

  ); 

 

The difference between these two code snippets is the way they retrieve data from the underlying 
datastore. In the second example, there is an SQL string that will get all orders from the country whose 
name is FRANCE, and will return the overall revenue of all customers living in that country. To do so, it will 
need to use the FROM clause in order to do a selection over the ORDERS data table, then apply a filter 
condition via the WHERE clause and the GROUP BY clause to group the summary of the values over those 
columns. Finally, it will project the two columns in the GROUP BY and will apply the aggregation operator 
over the revenue column. This query can be pushed down via the JDBC in cases Flink is integrated with an 
SQL compatible data source. Otherwise, it will grab all data from the table ORDERS first, and then it will 
apply this query over the dataset that has been fetched in memory.  

In the other code snippet however, the same query is expressed via the native API. We can see the involved 
operators are being constructed step-by-step. Given that, a filter will be applied on the specific column over 
the table that have been defined, which will get data from the table ORDERS. Then, the group by method 
will be invoked whose result will be projected by the select method, which also applies the aggregation 
operation. 

 

Apart from reading data, the API provides the ability to manipulate and persist data to a persistent storage. 
The following code snippet provides an example. 



D3.8 – Data Streaming and Data at Rest Queries Integration - III 

H2020 – Project No. 856632   © INFINITECH Consortium           Page 24 of 50 

 

// create an output Table 

final Schema schema = new Schema() 

    .field("a", DataTypes.INT()) 

    .field("b", DataTypes.STRING()) 

    .field("c", DataTypes.BIGINT()); 

 

tableEnv.connect(new FileSystem().path("/path/to/file")) 

    .withFormat(new Csv().fieldDelimiter('|').deriveSchema()) 

    .withSchema(schema) 

    .createTemporaryTable("CsvSinkTable"); 

 

// do something and get the result 

Table result = ... 

 

// emit the result Table to the registered TableSink 

result.executeInsert("CsvSinkTable") 

 

This code creates a temporary table called CsvSinkTable that is mapped to a csv file in the storage and has 
the schema that has been defined at the first lines of the code. After doing a process, the data analyst 
retrieves the data and puts them into an instance of the Table, and then invokes the executeInsert method 
to actually store data into the csv file. 

 

5.2 Stream Correlation with Data At-Rest 
Apache Flink provides two APIs that allows the manipulation of streaming data, which are the DataStream 
and DataSet APIs. Table API and SQL queries can be easily integrated with and embedded into DataStream 
and DataSet programs. As a result, the data analyst can write a query to retrieve data from an external data 
table that is stored in a relational database management system and do a pre-processing: apply some 
filters, aggregate data that are grouped by a number of columns and project specific columns to the 
temporary table. The data stored in the table can be further processed with either the two of the 
DataStream or DataSet APIs. The same can happen vice versa: it is possible for a DataStream or DataSet 
program to be used as an operand in an operator that is part of the Table API.  

Being able to transform those two APIs gives the ability for the streaming engine to correlate data of those 
two different types: streaming data with data at-rest. As data stored in the table can be further processed 
by the streaming APIs, it allows data coming from a stream to make use of static information that can be 
retrieved by query statements over a persistent data source. Having said that, we can retrieve the average 
value of the finance transactions of a user during the past week, by executing an analytical query to the 
target database, and retrieve this result via a Table. This value can later on be used by the streaming APIs to 
check if the value of a current finance transaction is bigger than the amount of money that this costumer is 
usually performing, that might trigger an alert. 

In the same sense, an operator of the Table interface might be able to insert data to a persistent storage. 
The ability of the Table to consume data of the streaming APIs allows for the direct ingestion of data 
streams into the storage layer. As it has been already mentioned, the insert operation usually puts data into 
a data queue, and a consumer process periodically sends micro batches to the target datastore. In 
INFINITECH, we have designed our insert operator to directly ingest data to the storage engine of the 
platform, taken advantage of its ultra-scalable transactional manager that allows to server operational 
workloads in very high rates. 

Moreover, in order to correlate stream and batch data, it is not enough to simply be able to transform the 
different types of APIs, but also providing a framework and operators that can be applicable to both types 
of data. Their main differences are that batch data are bound, while streaming is usually unbound, batch 
data pre-exist while streaming data continuously fills the query and batch data produces static results, 
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while streaming data continuously change the result as the stream goes through the operator. In order to 
overcome those differences, there has been introduced the concept of virtual views. All input of the 
operators implements such a virtual view so that the execution of the operator can be transparent from the 
implementation of the view. More precisely, in order to deal with streaming data, there has been proposed 
the Materialized view or Dynamic Table. The latter caches the result of the query such that the query does 
not need to be evaluated each time the view is being accessed. However, the data in the view can be 
outdated when a data modification operator arrives into the stream. In order to overcome this, different 
techniques can be applied that updates the materialized view, by listening to changes by data modification 
operators of the stream. Dynamic tables are changing over time in contrast to the static tables that 
represent batch data. Due to this, queries targeting streaming data are often called Continuous Queries, 
which never terminate and produce those dynamic tables as the result. This means that those queries 
continuously update their result in order to reflect the changes on its dynamic input tables. 

Taking into account that the maintenance of the updates coming from the stream in the dynamic table 
must be done in memory, this concept comes with several restrictions, mainly regarding computational and 
memory usage. Continuous queries are evaluated on unbounded streams and are often supposed to run 
for weeks or months. As a result, the total amount of data that a continuous query processes can be very 
large. Similarly, other queries require re-computing and updating a large fraction of the emitted result rows 
even if only a single input record is added or updated.  

Dynamic tables are the core concept of Flink’s Table API and SQL support for streaming data. In contrast to 
the static tables that represent batch data, dynamic tables are changing over time. They can be queried like 
static batch tables. Querying dynamic tables yields a Continuous Query. A continuous query never 
terminates and produces a dynamic table as result. The query continuously updates its (dynamic) result 
table to reflect the changes on its (dynamic) input tables. Essentially, a continuous query on a dynamic 
table is very similar to a query that defines a materialized view. 

 

5.3 INFINITECH Operators for the Streaming Engine 
As it has been described in the previous subsections, Apache Flink will be used as the basis for the Unified 
Query Processing Framework of INFINITECH that will allow the correlation of streaming data with at-rest. 
Even if natively this framework provides the tools and APIs to mix streaming with batch processing, they 
come with certain limitations so that the overall solution cannot be used for real-time business intelligence. 
To overcome these limitations, we decided to move all materialized views to be handled by the data 
management layer. This will imply that all data modification operators coming from the stream will be 
targeting the central data repository of the platform. Data stored in its data tables can be shared across 
different Flink sessions, so there is no need for the latter to create and bind temporary tables to sessions. 
Our design relies on the technological enablers of INFINITECH, as briefly described in Section 0, while more 
analytical details can be found at the relevant deliverables of the corresponding tasks of the project. In 
order to support data ingestion in very high rates, it was considered that accessing the storage engine of 
the platform will increase the overall throughput, as the latency will become lesser, due to the fact that a 
modification operation will avoid the performance overhead introduced by the footprint of the query 
engine. For this reason, an INFINITECH connector with Flink has to be provided that implements a group of 
specific operators. The delivery of those operators is the main objective of Task 3.3, and an initial list, along 
with some implementation details can be found in this subsection. 

 

Create/Alter Table Schema 

• AddColumns: Performs a field add operation. It will throw an exception if the added fields already 
exist. 
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• AddOrReplaceColumns: Performs a field add operation. Existing fields will be replaced if add 
columns name is the same as the existing column name. Moreover, if the added fields have 
duplicate field name, then the last one is used. 

• DropColumns: Performs a field drop operation. The field expressions should be field reference 
expressions, and only existing fields can be dropped. 

• RenameColumns: Performs a field rename operation. The field expressions should be alias 
expressions, and only the existing fields can be renamed. 

A code snippet on how to invoke these methods from Flink can be found as follows: 

 

Table orders = tableEnv.from("Orders"); 

//AddColumns 

result = orders.addColumns(concat($("c"), "sunny")); 

//AddOrReplaceColumns 

result = orders.addOrReplaceColumns(concat($("c"), "sunny").as("desc")); 

//DropColumns 

result = orders.dropColumns($("b"), $("c")); 

//RenameColumns 

result = orders.renameColumns($("b").as("b2"), $("c").as("c2")); 

 

This will require the connector to drop the table and to recreate with the corresponding schema, as defined 
in the Flink client. The following code snippet demonstrates how this is implemented in the connector, 
according to the type of mode to append. 

 

Settings settings = relationSettings.buildSessionSettings(); 

try(Session session= SessionFactory.newSession(relationSettings.getUrl(),settings)) { 

      String table = relationSettings.getTable(); 

      boolean exists = session.database().tableExists(table); 

      if(exists) { 

        switch (mode) { 

          case ErrorIfExists:  

              throw new IllegalArgumentException(String.format("Table %s already exists", table)); 

          case Overwrite:  

      session.database().dropTable(table); 

              createTable(session,table,keyFields,data.schema()); 

              break; 

          case Ignore:  

              return; 

        } 

      } 

      else{ 

        createTable(session,table,keyFields, data.schema()); 

      } 

    } 

catch (RuntimeException e){ 

  throw e; 

} 

catch (Exception e){ 

  throw new LeanxcaleRuntimeException(e); 

} 
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Scan, Projection, and Filter 

• From: Similar to the FROM clause in a SQL query. Performs a scan of a registered table. 

• Values: Similar to the VALUES clause in a SQL query. Produces an inline table out of the provided 
rows. 

• Select: Similar to a SQL SELECT statement. Performs a projection operation. 

• As: Renames fields. 

• Where / Filter: Similar to a SQL WHERE clause. Filters out rows that do not pass the filter predicate. 

A code snippet on how to invoke these methods from Flink can be found as follows: 

 

Table orders = tableEnv.from("Orders"); 

Table result = orders.select($("a"), $("c").as("d")) 

    .as("x, y, z, t") 

    .where($("b").isEqual("red")); 

 

This will require the connector to implement all corresponding filter methods that can be found in Flink. To 
handle these cases more effectively, a FilterTransator interface have been defined in the connector, which 
defined a filter method, that each of the operations implements accordingly. The FilterTransator can be 
found in the following code snippet: 

 

public interface FilterTranslator<T extends org.apache.flink.sql.sources.Filter>{ 

  Filter translate(T filter, TableModel tableModel); 

} 

 

An implementation of this method for the isEqual filter method of the example can be found in this code 
snippet: 

@Override 

public Filter translate(EqualTo filter, TableModel tableModel){ 

  String field = filter.attribute(); 

  Type type = tableModel.getFieldType(field); 

 

  switch (type){ 

    case SHORT: 

    case INT: 

    case LONG: return Filters.eq(field,((Number)value).intValue()); 

    case FLOAT: 

    case DOUBLE: return Filters.eq(field,((Number)value).doubleValue()); 

    case TIMESTAMP: return Filters.eq(Expressions.field(field), Constants.timestamp((Date)value)); 

    case DATE: return Filters.eq(Expressions.field(field), Constants.date((java.sql.Date)value)); 

    case TIME: return Filters.eq(Expressions.field(field), Constants.time((Time)value)); 

    case STRING: return Filters.eq(field, (String)value); 

    case BOOLEAN: return Filters.eq(Expressions.field(field), Constants.bool((Boolean)value)); 

      default: throw new IllegalArgumentException(String.format("Type not %s supported", type)); 

    } 

} 

 

Aggregations 

• GroupBy Aggregation: Similar to a SQL GROUP BY clause. Groups the rows on the grouping keys 
with a following running aggregation operator to aggregate rows group-wise 

The following code snippet shows how to invoke this method via Flink 

 

Table orders = tableEnv.from("Orders"); 
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Table result = orders.groupBy($("a")) 

                  .select($("a"), "b") 

      .sum() 

      .as("d")); 

 

 

Distinct 

• Distinct: Similar to a SQL DISTINCT clause. Returns records with distinct value combinations. 

The following code snippet shows how to invoke this method via Flink 

 

Table orders = tableEnv.from("Orders"); 

Table result = orders.distinct(); 

 

Joins 

Apache Flink supports various types of join operations, such as inner, outer or interval joins. This operator 
cannot be pushed down directly to the data storage of the INFINITECH platform, as its API does not support 
joins between tables. As a result, the user needs to use the JDBC driver to retrieve data from the data 
management player, and write a standard SQL statement, which will be executed by the query engine of 
the platform.  

Order By 

• Order By: Similar to a SQL ORDER BY clause. Returns records globally sorted across all parallel 
partitions. 

• Offset & Fetch: Similar to the SQL OFFSET and FETCH clauses. Offset and Fetch limit the number of 
records returned from a sorted result. Offset and Fetch are technically part of the Order By 
operator and thus must be preceded by it. 

A code snippet on how to invoke these methods from Flink can be found as follows: 

 

Table in = tableEnv.fromDataSet(ds, "a, b, c"); 

in.orderBy($("a").asc()) 

    .offset(10) 

     .fetch(5); 

 

Insertions 

• Insert Into: Similar to the `INSERT INTO` clause in a SQL query, the method performs an insertion 
into a registered output table. The `executeInsert()` method will immediately submit a Flink job 
which execute the insert operation. 

A code snippet on how to invoke this method from Flink can be found as follows: 

 

Table orders = tableEnv.from("Orders"); 

orders.executeInsert("OutOrders"); 

 

The outOrders table contains a list of rows that will be inserted into the datastore, via the connector. The 
implementation of this operator will execute the following code in order to insert the tuples to the data 
storage: 
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Settings settings = relationSettings.buildSessionSettings(); 

try(Session session = SessionFactory.newSession(relationSettings.getUrl(),settings)){ 

  int totalCount = 0; 

  try { 

 Table table = session.database().getTable(relationSettings.getTable()); 

 int commitCount = 0; 

 while (iterator.hasNext()) { 

   Tuple tuple = table.createTuple(); 

   Row row = iterator.next(); 

   for (int i = 0; i < fieldsByPos.length; i++) { 

  tuple.put(fieldsByPos[i], row.apply(i)); 

   } 

   table.insert(tuple); 

   totalCount++; 

   if(++commitCount>=commitRows){ 

  session.commit(); 

  commitCount = 0; 

   } 

 } 

 if(commitCount>0) { 

   session.commit(); 

 } 

  } 

  catch (Exception e){ 

 log.warn("Exception writing row {}, rollbacking transaction",totalCount); 

 

 try{ 

   session.rollback(); 

 } 

 catch (Exception e1){ 

   log.error("Exception doing rollback {}",e1.getMessage(), e1); 

    } 

    throw  e; 

  } 

} 

catch (RuntimeException e){ 

  throw e; 

} 

catch (Exception e){ 

  throw  new LeanxcaleRuntimeException(e); 

} 
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6 The INFINISTORE Flink Connector 
After an exhaustive analysis of the state-of-the-art technologies used for unified query processing of both 
streaming data and data at-rest, and after deciding to rely on the Apache Flink streaming processing 
framework, during the first phase of the project, we provided a distribution of Flink that relies on the JDBC 
connections of the INFINISTORE for accessing data from the datastore, and delegates to Flink handle the 
processing. In parallel, we analyzed what Flink can offer and designed our custom implementation of the 
Flink Operator for the INFINISTORE, based on the interfaces that Flink provides to external data providers. 
During the last phase of the task T3.3 that is documented in this report, we implemented this connector, 
whose details will be described in this section. We have implemented both the sink (from Flink to the 
datastore) and source (from the datastore to Flink) mechanisms of the connector, that taking advantage 
the underlying technologies developed in the project, will: 

• allow Flink to store data to the INFINISTORE coming from a streaming with very high velocity, 
taking advantage of the high data ingestion capabilities of the datastore itself, as explained in D3.3 
(“Hybrid Transactional/ Analytics Processing for Finance and Insurance Applications – III”) 

• retrieve pre-processed aggregated data from the INFINISTORE with minimum latency, avoiding the 
need to either scan the whole data table in the datastore layer, or cache the table in memory and 
either lose data consistency or run out of memory, using the advancements of the Online 
Aggregates, documented in D5.6 (“Framework for Declarative and Configurable Analytics – III”) 

• retrieve data coming from the INFINISTORE as an un-bound data stream, using the advancements 
of the Incremental Analytics, documented in D5.3 (“Library of Parallelized Incremental Analytics – 
III”). 

We have divided this section as follows. First, we will give a general overview of the core of our 
implementation, and then we will dive into the details for the sink implementation and then for the source 
implementation. Later, we will describe how we implanted the additional abilities supported by the Flink 
that allows our implementation to further process data much more efficiently, allowing the Flink query 
engine to push operations down to the datastore. Finally, we will provide a demonstrator of its use. 

 

6.1 The INFINSTORE Flink Connector: The core 
Apache Flink allows its users to define their materialized views, and explicitly require the use of a custom 
connector to access an external data management system, providing its specific configuration parameters. 
An example of such a definition can be found in the following code snippet:  

EnvironmentSettings settings = EnvironmentSettings.newInstance().build(); 

TableEnvironment tEnv = TableEnvironment.create(settings); 

 

tEnv.executeSql("CREATE TABLE SENTIMENTS (\n" + 

  "    id_str  VARCHAR,\n" + 

  "    sentiment      VARCHAR,\n" + 

  "    sentiment_score      DOUBLE,\n" + 

  "    created_at TIMESTAMP(3)" + 

  ") WITH (\n" + 

  "    'connector' = 'kivi',\n" + 

  "    'connection-url' = 'lx://datastore:9876/SARGA@APP;KVPROXY=datastore!9800',\n" + 

  "    'bounded' = 'true',\n" + 

  "    'table-name' = 'TWEET_FINANCE'\n" + 

  ")"); 
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We will rely on this example in the following subsections to demonstrate the use of our connector. Here, 
the user defines a materialized view for a dynamic table called SENTIMENTS with 4 fields (id_str, sentiment, 
sentiment_score and a timetamp) and a list of configuration parameters. This will make use of a static table 
stored in the INFINISTORE, where we put the results of a sentiment analysis over a stream of data coming 
from a Tweeter, related with trends in the finance sector.  

This materialized view can be now be used by the Flink query engine to both store (using the sink 
connector) and retrieve (using the source connector) from the INFINISTORE. When access to this 
materialized view is requested, then Flink will make use of the custom TableFactory implementation, to 
provide its catalogue meta-info. Flink defines two interfaces, the DynamicTableSourceFactory and 
DynamicTableSinkFactory to be used for inserting or retrieving data from the external data source provider, 
in our case, the INFINISTORE. Therefore, as depicted in Figure 2, our KiviTableFactory will implement both 
those interfaces. 

 

 

Figure 2: Flink Connector – The Core Factory 

The aforementioned interfaces define a set of common methods that will return the unique identifier of 
our implementation, which in our case is called ‘kivi’, methods that return the options or configuration 
parameters that the data user has defined in his or her materialized view, and the methods to create the 
instances for the sink and source implementations to be later used by Flink’s internal query engine. The 
following code snippet illustrates the options or configuration parameters that our implementation 
expects, along with their default values (if applicable).  

// defininition of all available options 

ConfigOption<String> CONNECTION_URL = ConfigOptions.key("connection-

url").stringType().noDefaultValue(); 

ConfigOption<String> TABLE_NAME = ConfigOptions.key("table-name").stringType().noDefaultValue(); 

ConfigOption<Long> POLL_FREQUENCY = ConfigOptions.key("poll-

frequency").longType().defaultValue(1000L); 

ConfigOption<Integer> MAX_TRANSACTION_TIME = ConfigOptions.key("max-transaction-

time").intType().noDefaultValue(); 

ConfigOption<Integer> READER_QUEUE_SIZE = ConfigOptions.key("reader-queue-

size").intType().defaultValue(10000); 

ConfigOption<Integer> CONNECTION_ATTEMPS = ConfigOptions.key("connection-

atemps").intType().noDefaultValue(); 

ConfigOption<String> STREAM_BEHAVIOUR = ConfigOptions.key("stream-

behaviour").stringType().defaultValue("infinite"); 

ConfigOption<Long> MAX_DURATION = ConfigOptions.key("max-duration").longType().defaultValue(0L); 

ConfigOption<Integer> COMMIT_BATCH = ConfigOptions.key("commit-

batch").intType().defaultValue(10000); 

ConfigOption<String> READER_FROM = ConfigOptions.key("reader-

from").stringType().defaultValue("begin"); 

ConfigOption<Long> OFFSET_CTS = ConfigOptions.key("offset-cts").longType().defaultValue(0L); 
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ConfigOption<Boolean> BOUNDED = 

ConfigOptions.key("bounded").booleanType().defaultValue(Boolean.TRUE);  

 

We can see from the code snippet parameters like connection-url, table-name etc. that was previously 
defined by our data user in the example we provided.  

We will now go into the details of the implementation first for the sink part, and then for the source. 

 

6.2 The INFINSTORE Flink Connector: The sink implementation 
Having the definition of the materialized view that we illustrated in the previous example, let’s imagine that 
the data user now wants to insert some records into our data table, after a sentiment analysis that took 
place by analyzing an incoming stream of Tweets using the Apache Flink Framework. In other words, the 
result such an analysis will be stored in the IFNINISTORE. The data user may need to write something 
similar to the following code snippet: 

org.apache.flink.table.api.Table source = tEnv.from("source"); 

org.apache.flink.table.api.Table table = tEnv.sqlQuery("select * from source"); 

TableResult result = table.executeInsert("SENTIMENTS");  

 

In this code, he or she will take input from a source, which in our case can be the result of a Flink operator 
that does the aforementioned sentiment analysis, and will insert the result obtained by the latter, into the 
materialized view called SENTIMENTS, that we defined in the previous subsection. When the executeInsert 
is called, Flink will examine the materialized view, will grab the connector attribute, which in our case is 
called ‘kivi’ and will try to find the DynamicTableSinkFactory implementation factory, whose 
factoryIdentifier method returns the value of ‘kivi’. In our case, this will be our KiviTableFactory. Then it 
invoke its createDynamicTableSink to get our implementation that will be used by Flink’s internal query 
planner and finally establish the connection to INFINISTORE and eventually store the dataset. Figure 3 
depicts the class diagram of our implementation. 

 

 

Figure 3: Flink Connector – The Sink implementation 
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Our KiviTableFactory will create a DynamicTableSink that will be used by the Flink’s internal planner. It 
implements the DynamicTableSink and has to implement its methods. Flink can invoke the copy method to 
create various copies of this instance to be used internally by its query optimizer and re-configure how the 
skink run-time implementation should behave. In the case of the sink implementation, there are no many 
options, so eventually, its getSinkRuntimeProvider will create the function or operator that will take the 
responsibility to connect to the external datastore, the INFINISTORE, and handle the logic of storing the 
results. Thus, an implementation of the RichSinkFunction will be created, which in our case is the 
KiviSinkFunction. 

KiviSinkFunction needs to implement the start method that will be invoked by the Flink core engine to start 
the operator. Our implementation takes care of establishing the database connection to the INFNIISTORE, 
by creating a KiviSession instance, and initializes all its internal state. Then, Flink will (periodically or not) 
call the invoke function, providing a list of RowData. This class wrappers the data coming from Flink and 
need to be handled by each custom implementation of the Flink connector. KiviSinkFunction translates 
these objects to Tuples, which is the class the represents a data row in the storage engine of the 
INFINISTORE database. It will communicate with the target data table, the TWEET_FINANCE that was 
defined in the materialized view, to get the meta-information of this table. This value is passed to the 
runtime implementation via the KiviOptions that was initially created by our factory. KiviSession will return 
the schema meta-information, so that the KiviSinkFunction can transform the incoming RowData to the 
Tuple that is required by the INFINISTORE. Having the KiviSession data connection open, our 
implementation will iterate through the list of incoming data, it will invoke the insert operation of the 
opened connection and will commit after a pre-defined size of batch (retrieved by the commit-batch 
parameter in the KiviOptions). It is important to highlight here that no actual communication with the 
datastore will take place before the invocation of the commit method, so our implementation takes 
advantage of the characteristics of the INFINISTORE itself, and sends a large batch of input tuples (its 
default size is 1000) that can be handled efficiently by the datastore. That way, there is no much time spent 
for communicating with the datastore, and the Flink sends batches of records periodically.  

At the end, the Flink core engine will invoke the finish operator, and our KiviSinkFunction implementation 
will finally commit all remaining tuples that was not committed before. And then, the invocation of the 
close method will close the opened KiviSession database connection, releasing all the pending open 
resources.  

 

6.3 The INFINSTORE Flink Connector: The source implementation 
As we saw how our implementation of the Flink connector works the core of the streaming processing 
framework for inserting data to the external datastore, in our case the INFINISTORE, now we can take a 
look on how it works for reading data from the datastore. 

Let’s imagine that our data user wants now to read the already stored data to his or her previously defined 
materialized view. A first attempt will be to read everything from the target data table and use Flink’s query 
engine to further process data and combine them with other streaming data coming as input from a 
different channel. The data user may need to write something similar to the following code snippet: 

Table testFromSourceTable = tEnv.from("SENTIMENTS"); 

TableResult tableResult = testFromSourceTable.execute(); 

 

This line of code will get everything from our materialized view called SENTIMENTS and will allow the data 
user to make use of the Flink’s Table API, as explained in a previous section. When the execute is called, 
Flink will again examine the materialized view, will grab the connector attribute, which in our case is called 
‘kivi’ and will try to find the DynamicTableSourceFactory implementation factory, whose factoryIdentifier 
method returns the value of ‘kivi’. In our case, this again will be our KiviTableFactory that implements both 
interfaces. Then it invoke its createDynamicTableSource to get our implementation that will be used by 
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Flink’s internal query planner and finally establish the connection to INFINISTORE and eventually store the 
dataset. Figure 4 illustrates how this has been implemented in our case. 

 

Figure 4: Flink Connector – The Source implementation 

 

 The class diagram is very similar to the one we showed for the sink part of our connector. The 
KiviTableFactory will create an instance of the KiviTableSource. The latter will be used internally by the Flink 
query planner to explore and examine alternative query plans that could be used for the runtime 
execution. The planner could create numerous variations of the KiviTableSource, changing or injecting 
additional parameters before deciding on which will make use. In this simple example, the data user wants 
to retrieve everything from the external datastore, so there are no other alternatives on how the planner 
can further improve the overall query execution and will decide to use the firstly created instance. Once 
this is decided, then the getScanRuntimeProvider method will be called, that will return an implementation 
of the RichSourceFunction, which in our case is the KiviSourceFunction. This will take the responsibility of 
the runtime execution of this function or operator, establish a connection to the external data source 
provider, which in our case is the INFINISTORE, retrieve the results and return them back to the Flink core 
engine to become eventually available to the data user from the Table API. The implementation of the 
KiviSourceFunction is more complicated in this case from the KiviSinkFunction that we documented in the 
previous subsection, and its details are illustrated in Figure 5. 

KiviSourceFunction extends the Flink’s RichSourceFunction that defines a set of methods. As it might make 
use of the incremental analytics of INFINISTORE to get data from an un-bounded query, it will eventually 
make use of an Iterable object that will have to wait and block until new data can become available. Due to 
this, we need to put the code that gets data from the data management system in a separate thread. The 
implementation of our function is similar to the implementation of the Kafka Source Connector that we 
implemented under the scope of T5.2 (“Incremental and Parallel Data Analytics”) and documented in D5.3 
(“Library of Parallelized Incremental Analytics – III”). Here is how it works: 

After creating our RichSourceFunction to handle the data retrieval in run-time, the Flink core engine will 
invoke its open method. Our implementation will create an instance of the LXReader and pass to the latter 
all information it needs to establish a data connection and create the query statement it needs to submit to 
the IFNINISTORE, using its direct API. Similarly to the Kafka Source Connector, the LXReader shares a data 
queue with the RichFuinction to exchange asynchronously data retrieved from one thread to the thread 
that is being used by the Flink core engine. It will open the database connection using the KiviSession and 
retrieve data from the datastore as Tuples. As data is retrieved, the tuple is put in the TupleQueue. Once 
data is there, the KiviSourceFunction retrieves the data and transforms them to RowData, the class the 
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takes the role of a data wrapper from Flink to put the information. In order to do so, it gets the meta-info of 
the retrieved tuple, in order to transform the tuple to the corresponding data type expected by flink.  

 

 

Figure 5: Flink Connector – The Source implementation: KiviSourceFunction 

In the case of bounded queries, when the iterator retrieved by the KivSession closes, the 
RichSourceFunction’s run method will end, and Flink will gracefully close this instance. In case there is an 
un-bounded query, the iterator will remain open and wait for new data, due to the provision of the 
incremental analytics. We need to highlight here that the RichSourceFunction is a Runnable object, so its 
run method will not terminate, and will continuously make a loop and check for new values every given 
period of time, defined by the poll-frequency configuration parameter defined in the materialized view of 
this table.  

In case Flink decides to stop the run-time execution of this operator, the cancel operation will be invoked, 
that will raise a flag for the operator to stop. This will make the run method to eventually finish, and then 
Flink will invoke the close method of the operator. The operator then, will communicate with the LXReader 
thread, so the latter can stop the waiting iterator, close the database connection by terminating the 
KiviSession, and finally release all open resources. 
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6.4 Implementation of Flink source abilities 
In the previous subsection, we provided documentation on how our source connector works along with the 
Apache Flink streaming processing framework. We used a simple example that our data user needs to 
retrieve all information stored in a table. However, a most real scenario will be for the data user to request 
data concerning only specific fields of the dataset, or put some filter criteria to get a subset of the overall 
dataset. Such a scenario can be depicted in the following code snippet:  

testFromSourceTable = tEnv.from("SENTIMENTS ").select($("id_str"), 

$("sentiment_score").as("this_is_the_name")); 

testFromSourceTable = 

testFromSourceTable.filter($("sentiment").isEqual("sentimentB")).filter($("sentiment_score").isGreat

er(20.0)); 

TableResult tableResult = testFromSourceTable.execute(); 

 

Here, our data user needs to select the id_str and sentiment_score fields from the data table, whose 
sentiment value is equal to a given one, and whose score is greater than a given value. With our base 
implementation that was demonstrated in the previous subsection, Apache Flink would have needed to get 
the overall dataset from the INFINISTORE and apply the project and filter operations defined in this code 
snippet in-memory, inside Flink. This is very inefficient as the overall dataset would have needed to be 
transmitted from the data source and then Flink would have needed to calculate the result using its internal 
operations in-memory. To avoid this, the Flink source connector provides the abilities interfaces that allow 
custom implementations to accept operations from Flink and execute these operations in the data 
management layer. In our connector, we have implemented the following abilities, as depicted in Figure 6. 

 

 

Figure 6: Flink Connector – The Source implementation: abilities 

The SupportsLimitPushDown interface defines a method to apply this operator. It passes the number of the 
limit operation, so that the implementation can only return this given number of records. The source code 
of our KiviTableSource is illustrated in the following code snippet: 

//methods that implements the SupportsProjectionPushDown interface 

@Override 

public boolean supportsNestedProjection() { 

 return false; 

} 

 

@Override 
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public void applyProjection(int[][] ints) { 

 this.projectionFields = ints; 

} 

 

The SupportsProjectPushDown interface defines a method to apply this operator. It passes the list of fields 
that the data user wants to receive, so that the implementation can only return these given columns. The 
source code of our KiviTableSource is illustrated in the following code snippet: 

 

//methods that implement the SupportsLimitPushDown interface 

@Override 

public void applyLimit(long l) { 

 this.limit = l; 

} 

 

 

The SupportsFilterPushDown interface defines the filter criteria that our source implementation needs to 
get into account in order to return only the data rows that satisfy these criteria. However, an external 
datastore could only support a subset of a filter operations provided by Flink. Due to this, it needs to 
examine the input filter criteria, inform the Flink Planner which can be supported and further pushed down 
to the storage, and which cannot and need to be handled by the Flink query engine itself. The source code 
of our KiviTableSource is illustrated in the following code snippet: 

 

//methods that implement the SupportsFilterPushDown 

@Override 

public Result applyFilters(List<ResolvedExpression> list) {         

 Result result = FilterTranslatorFactory.getSupported(list); 

 this.acceptedFiltersResult = result; 

 return result; 

} 

 

As has been illustrated, the input parameters passed by the implementations of the abilities interfaces are 
stored internally in the instance of our KiviTableSource to be further sent to the KiviSourceFunction, so that 
the latter can use them and create the query statement appropriately. For the SupportsFilterPushDown, we 
need however to further process the incoming input, that is sent in the form of an ResolvedExpression, 
decide which filter conditions are supported and transform these objects to what is meaningful for the 
external data source provider, our INFINISTORE. For that, we use a new factory that does this job for us, as 
depicted in the class diagram of Figure 7. 

Here we follow the same approach and principles as in the implementation of our Kafka Source Connector 
described in D5.3 (“Library of Parallelized Incremental Analytics – III”). A FilterTranslator interface defines 
the method translate that all its implementations should provide. We have an implementation for each of 
the filter criteria the INFINSTORE’s storage engine supports: AND, OR, EQUALS (“=”), GREATER (“>”), 
GREATER_OR_EQUALS (“=>”), NOT NULL etc. Each of these classes transforms the input ResolvedExpression 
to a Filter that will be passed to the INFINSTORE via the KiviSession of the LXReader. The 
FilterTranslatorFactory receives the input list of expressions, validates which are supported, and finally, 
translates the supported ones to an object of the Filter class of the direct API of the storage engine of the 
INFINISTORE. 
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Figure 7: Flink Connector – The Source abilities: SupportsFilterPushDown 

 

 

6.5 Demonstration of INFINSTORE Flink Connector 
In this section we will provide some examples with client source code that the data user can make use of 
our provided Flink connector to access the INFINSTORE, make some queries and insert data using its sink 
part. 

In the following code snippet, we have created a unit test that firstly opens a database connection with the 
INFINISTORE using its direct API, and adds 100 rows. Then, in the main method of this test, we create two 
materialized view: one for the source, and one for the sink. We will first read the everything from the 
source and the TableResult that will be obtained, will be written in the materialized view that is linked with 
the sink. Finally, we will read from the INFINISTORE and we will validate that these 100 rows are actually 
stored in the datastore. The code snippet is as follows: 

package com.leanxcale.connector.flink; 

 

import static java.util.Arrays.asList; 

 

import com.leanxcale.connector.commons.test.LXBaseTest; 

import com.leanxcale.exception.LeanxcaleException; 

import com.leanxcale.kivi.database.Database; 

import com.leanxcale.kivi.database.Field; 

import com.leanxcale.kivi.database.Table; 

import com.leanxcale.kivi.database.Type; 

import com.leanxcale.kivi.session.Session; 

import com.leanxcale.kivi.session.SessionFactory; 

import com.leanxcale.kivi.tuple.Tuple; 
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import java.io.IOException; 

import java.util.stream.IntStream; 

import org.apache.flink.table.api.EnvironmentSettings; 

import org.apache.flink.table.api.TableEnvironment; 

import org.apache.flink.table.api.TableResult; 

import org.junit.Assert; 

import org.junit.BeforeClass; 

import org.junit.Test; 

 

public class HappyPathITest extends LXBaseTest{ 

 

  private static final String TABLE_SOURCE = "FLINK_TEST_SOURCE"; 

  private static final String TABLE_SINK = "FLINK_TEST_SINK"; 

  private static final int ROWS = 100; 

 

  @BeforeClass 

  public static void setup() throws IOException, LeanxcaleException, InterruptedException { 

    try (Session session = SessionFactory.newSession(settings)) { 

      Database database = session.database(); 

 

      database.createTable(TABLE_SOURCE, asList(new Field("FIELD1", Type.INT)), 

          asList(new Field("FIELD2", Type.STRING), new Field("FIELD3", Type.DOUBLE))); 

 

      database.createTable(TABLE_SINK, asList(new Field("FIELD1", Type.INT)), 

          asList(new Field("FIELD2", Type.STRING), new Field("FIELD3", Type.DOUBLE))); 

 

      Table table = database.getTable(TABLE_SOURCE); 

      Tuple tuple = table.createTuple(); 

      IntStream.range(0, ROWS).forEach(x->{ 

        tuple.put("FIELD1", x); 

        tuple.put("FIELD2", "field2 text:"+x); 

        tuple.put("FIELD3", x+(x/10.0)); 

        table.insert(tuple); 

      }); 

 

      session.commit(); 

      if (runningOnBlade) Thread.sleep(1000); 

    } 

  } 

 

  @Test 

  public void happyPathTest() throws IOException, LeanxcaleException, InterruptedException { 

    EnvironmentSettings settings = EnvironmentSettings.inStreamingMode(); 

    TableEnvironment tEnv = TableEnvironment.create(settings); 

 

    tEnv.executeSql("CREATE TABLE source (" + 

        "    field1 INTEGER," + 

        "    field2 VARCHAR," + 

        "    field3 DOUBLE" + 

        ") WITH (" + 

        "    'connector' = 'kivi'," + 

        "    'connection-url' = '"+ URL + "'," + 

        "    'table-name' = '"+ TABLE_SOURCE +"'," + 

        "    'bounded' = 'false'," + 

        "    'stream-behaviour' = '"+"end_on_null"+"'" + 

        ")"); 

 

    tEnv.executeSql("CREATE TABLE sink (" + 

        "    field1 INTEGER," + 

        "    field2 VARCHAR," + 

        "    field3 DOUBLE" + 

        ") WITH (" + 

        "    'connector' = 'kivi'," + 

        "    'connection-url' = '"+ URL + "'," + 
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        "    'table-name' = '"+ TABLE_SINK +"'," + 

        "    'commit-batch' = '"+ 30 +"'" + 

        ")"); 

 

    org.apache.flink.table.api.Table source = tEnv.from("source"); 

    org.apache.flink.table.api.Table table = tEnv.sqlQuery("select * from source"); 

    TableResult result = table.executeInsert("sink"); 

 

    TableResult tableResult = testTable.execute(); 

 

    tableResult.print(); 

 

    tableResult.collect().forEachRemaining(((t) -> { 

      System.out.println(t); 

    })); 

 

    List<Row> rows = new ArrayList<Row>(); 

    result.collect().forEachRemaining(rows::add); 

    Assert.assertEquals(ROWS, rows.size()); 

 

    long sinkCount = getTableRowCount(TABLE_SINK); 

    Assert.assertEquals(ROWS, sinkCount); 

  } 

 

  private long getTableRowCount(String tableName) throws IOException, LeanxcaleException { 

    try(Session session = SessionFactory.newSession(settings)){ 

      Table table = session.database().getTable(tableName); 

      return table.find().asStream().stream().count(); 

    } 

  } 

} 

 

In the next code snippet, we will validate our implementation for the support of the push down of the 
projections. Again, we will add 100 rows in a table in INFNISTORE and then we will read from the datastore, 
applying the select criteria that will be translated into projections. Finally, we will read using our source 
connector and the unit test will validate that we can read only the specific columns requested. If we try to 
read something not included in the projection list, then an error should be thrown. This code snippet is as 
follows:  

package com.leanxcale.connector.flink; 

 

import static java.util.Arrays.asList; 

 

import com.leanxcale.connector.commons.test.LXBaseTest; 

import com.leanxcale.exception.LeanxcaleException; 

import com.leanxcale.kivi.database.Database; 

import com.leanxcale.kivi.database.Field; 

import com.leanxcale.kivi.database.Table; 

import com.leanxcale.kivi.database.Type; 

import com.leanxcale.kivi.session.Session; 

import com.leanxcale.kivi.session.SessionFactory; 

import com.leanxcale.kivi.tuple.Tuple; 

import java.io.IOException; 

import java.util.stream.IntStream; 

import org.apache.flink.table.api.EnvironmentSettings; 

import static org.apache.flink.table.api.Expressions.$; 

import org.apache.flink.table.api.TableEnvironment; 

import org.apache.flink.table.api.TableResult; 

import org.junit.Assert; 

import org.junit.BeforeClass; 

import org.junit.Test; 

 

/** 
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 * 

 * @author Pavlos Kranas (LeanXcale) 

 */ 

public class SupportsProjectionPushDownTest extends LXBaseTest{ 

 

  private static final String TABLE_NAME_OFFSET = "_SUPPORTS_PROJECT_PUSHDOWN"; 

  private static final String TABLE_SOURCE = "FLINK_TEST_SOURCE" + TABLE_NAME_OFFSET; 

  private static final int ROWS = 100; 

 

  @BeforeClass 

  public static void setup() throws IOException, LeanxcaleException, InterruptedException { 

    try (Session session = SessionFactory.newSession(settings)) { 

 

      Database database = session.database(); 

 

      database.createTable(TABLE_SOURCE, asList(new Field("FIELD1", Type.INT)), 

          asList(new Field("FIELD2", Type.STRING), new Field("FIELD3", Type.DOUBLE))); 

 

 

      Table table = database.getTable(TABLE_SOURCE); 

      Tuple tuple = table.createTuple(); 

      IntStream.range(0, ROWS).forEach(x->{ 

        tuple.put("FIELD1", x); 

        tuple.put("FIELD2", "field2 text:"+x); 

        tuple.put("FIELD3", x+(x/10.0)); 

        table.insert(tuple); 

      }); 

 

      session.commit(); 

      if (runningOnBlade) Thread.sleep(1000); 

    } 

  } 

 

  @Test 

  public void happyPathSQLTest() throws IOException, LeanxcaleException, InterruptedException { 

    EnvironmentSettings settings = EnvironmentSettings.inStreamingMode(); 

    TableEnvironment tEnv = TableEnvironment.create(settings); 

 

    tEnv.executeSql("CREATE TABLE source (" + 

        "    field1 INTEGER," + 

        "    field2 VARCHAR," + 

        "    field3 DOUBLE" + 

        ") WITH (" + 

        "    'connector' = 'kivi'," + 

        "    'connection-url' = '"+ URL + "'," + 

        "    'table-name' = '"+ TABLE_SOURCE +"'" + 

        ")"); 

 

 

    org.apache.flink.table.api.Table table = tEnv.sqlQuery("select field1, field2 from source"); 

    TableResult tableResult = table.execute(); 

    tableResult.collect().forEachRemaining(((t) -> { 

        Assert.assertEquals(2, t.getArity()); 

        Assert.assertNotNull(t.getField("field1")); 

        Assert.assertNotNull(t.getField("field2")); 

        try { 

            t.getField("field3"); 

        }catch(Exception ex) {/*ok*/} 

      })); 

  } 

   

   

  @Test 

  public void happyPathNativeTest() throws IOException, LeanxcaleException, InterruptedException { 
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    EnvironmentSettings settings = EnvironmentSettings.inStreamingMode(); 

    TableEnvironment tEnv = TableEnvironment.create(settings); 

 

    tEnv.executeSql("CREATE TABLE source (" + 

        "    field1 INTEGER," + 

        "    field2 VARCHAR," + 

        "    field3 DOUBLE" + 

        ") WITH (" + 

        "    'connector' = 'kivi'," + 

        "    'connection-url' = '"+ URL + "'," + 

        "    'table-name' = '"+ TABLE_SOURCE +"'" + 

        ")"); 

 

    org.apache.flink.table.api.Table table = tEnv.from("source").select($("field1"), 

$("field3").as("other_name")); 

    TableResult tableResult = table.execute(); 

    tableResult.collect().forEachRemaining(((t) -> { 

        Assert.assertEquals(2, t.getArity()); 

        Assert.assertNotNull(t.getField("field1")); 

        Assert.assertNotNull(t.getField("other_name")); 

        try { 

            t.getField("field2"); 

        }catch(Exception ex) {/*ok*/} 

      })); 

  }     

} 

 

The last code snippet will make a combination of both projections and limit operations, to firstly validate 
that the support for limit works and the Flink query planner works when creating its internal query 
execution plan, examining various scenarios. That will involve the invocation of the copy method of our 
KiviTableSource that needs to preserve the newly added instructions for pushing down combination of 
operators. The structure of the test is similar to the previous ones and the source code of our unit test is 
illustrated in the following code snippet:  

package com.leanxcale.connector.flink; 

 

import com.leanxcale.connector.commons.test.LXBaseTest; 

import com.leanxcale.exception.LeanxcaleException; 

import com.leanxcale.kivi.database.Database; 

import com.leanxcale.kivi.database.Field; 

import com.leanxcale.kivi.database.Table; 

import com.leanxcale.kivi.database.Type; 

import com.leanxcale.kivi.session.Session; 

import com.leanxcale.kivi.session.SessionFactory; 

import com.leanxcale.kivi.tuple.Tuple; 

import java.io.IOException; 

import java.util.ArrayList; 

import static java.util.Arrays.asList; 

import java.util.List; 

import java.util.stream.IntStream; 

import org.apache.flink.table.api.EnvironmentSettings; 

import static org.apache.flink.table.api.Expressions.$; 

import org.apache.flink.table.api.TableEnvironment; 

import org.apache.flink.table.api.TableResult; 

import org.apache.flink.types.Row; 

import org.junit.Assert; 

import org.junit.BeforeClass; 

import org.junit.Test; 

 

/** 

 * 

 * @author Pavlos Kranas (LeanXcale) 

 */ 
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public class SupportsLimitPushDownTest extends LXBaseTest{ 

 

  private static final String TABLE_NAME_OFFSET = "_SUPPORTS_LIMIT_PUSHDOWN"; 

  private static final String TABLE_SOURCE = "FLINK_TEST_SOURCE" + TABLE_NAME_OFFSET; 

  private static final int ROWS = 100; 

   

  @BeforeClass 

  public static void setup() throws IOException, LeanxcaleException, InterruptedException { 

    try (Session session = SessionFactory.newSession(settings)) { 

 

      Database database = session.database(); 

 

      database.createTable(TABLE_SOURCE, asList(new Field("FIELD1", Type.INT)), 

          asList(new Field("FIELD2", Type.STRING), new Field("FIELD3", Type.DOUBLE))); 

 

      Table table = database.getTable(TABLE_SOURCE); 

      Tuple tuple = table.createTuple(); 

      IntStream.range(0, ROWS).forEach(x->{ 

        tuple.put("FIELD1", x); 

        tuple.put("FIELD2", "field2 text:"+x); 

        tuple.put("FIELD3", x+(x/10.0)); 

        table.insert(tuple); 

      }); 

 

      session.commit(); 

      if (runningOnBlade) Thread.sleep(1000); 

    } 

  } 

 

  @Test   

  public void pushDownLimitTest() throws IOException, LeanxcaleException, InterruptedException { 

    EnvironmentSettings settings = EnvironmentSettings.inStreamingMode(); 

    TableEnvironment tEnv = TableEnvironment.create(settings); 

 

    tEnv.executeSql("CREATE TABLE source (" + 

        "    field1 INTEGER," + 

        "    field2 VARCHAR," + 

        "    field3 DOUBLE" + 

        ") WITH (" + 

        "    'connector' = 'kivi'," + 

        "    'connection-url' = '"+ URL + "'," + 

        "    'table-name' = '"+ TABLE_SOURCE +"'" + 

        ")"); 

 

 

    org.apache.flink.table.api.Table table = tEnv.from("source").limit(5); 

    TableResult tableResult = table.execute(); 

    List<Row> list = new ArrayList<>(100); 

    Thread.sleep(5000); //wait for source to poll the results first 

    tableResult.collect().forEachRemaining(t -> { 

        list.add(t); 

    }); 

     

    Assert.assertEquals(5, list.size()); 

     

    table = tEnv.from("source").limit(8, 15); 

    tableResult = table.execute(); 

    List<Row> listOther = new ArrayList<>(100); 

     

    Thread.sleep(5000); //wait for source to poll the results first 

    tableResult.collect().forEachRemaining(t -> { 

        listOther.add(t); 

    }); 
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    Assert.assertEquals(15, listOther.size()); 

  } 

   

  @Test  

  public void pushDownLimitWithProjectionTest() throws IOException, LeanxcaleException, 

InterruptedException { 

    EnvironmentSettings settings = EnvironmentSettings.inStreamingMode(); 

    TableEnvironment tEnv = TableEnvironment.create(settings); 

 

    tEnv.executeSql("CREATE TABLE source (" + 

        "    field1 INTEGER," + 

        "    field2 VARCHAR," + 

        "    field3 DOUBLE" + 

        ") WITH (" + 

        "    'connector' = 'kivi'," + 

        "    'connection-url' = '"+ URL + "'," + 

        "    'table-name' = '"+ TABLE_SOURCE +"'" + 

        ")"); 

 

 

    org.apache.flink.table.api.Table table = tEnv.from("source").select($("field1"), 

$("field2")).limit(5); 

    TableResult tableResult = table.execute(); 

    List<Row> list = new ArrayList<>(100); 

     

    Thread.sleep(5000); //wait for source to poll the results first 

    tableResult.collect().forEachRemaining(t -> { 

        list.add(t); 

    }); 

     

     

    Assert.assertEquals(5, list.size()); 

    for(Row row : list) { 

        row.getField("field1"); 

        row.getField("field1"); 

        try { 

            row.getField("field3"); 

        } catch(Exception ex) {/*ok*/} 

    } 

  }       

} 
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7 Combined Data Streaming and Data at Rest 
Illustration 

Having discussed how the INFINITECH solution handles efficient combination of data in-flight and data at 
rest in the previous section, it is valuable to provide an illustration of how this would add value with respect 
to a specific INFINITECH Pilot. Hence, in this section we provide a walk-through of an updated Flink 
topology for the real-time risk assessment in investment banking (Pilot#2) use-case (also discussed 
previously in Section 2.2). Recall that the aim of this use-case is to produce as close to real-time risk 
assessments for customer investment portfolios as possible, e.g. such that customers can be alerted if 
significantly elevated risks start to be observed. Risk is quantified with the metric Value-at-Risk (VaR), which 
is calculated by analysing the asset returns over many time periods and calculating an average % loss across 
the worst 5% performing time periods (as a worst-case scenario).     

 

To understand the issues with calculating real-time VaR, we first provide an illustration of a naive solution 
in Figure 2. In this setup, we take as input on the left-hand side a stream of asset pricing data (e.g. from a 
stock market or trading platform). To calculate VaR for an asset at the current moment, we need to retrieve 
the historical pricing data for that asset, which will involve an expensive table scan over whatever back-end 
database is being used to persistently store asset prices. Once this is done, the resultant array of asset 
prices will need to be transferred over the network from the database with the asset pricing data to the 
current Flink Worker responsible for processing the new asset price event (that again may be expensive). 
The historical prices will then be merged into the stream with the new price event and sent on to an 
aggregator to calculate asset returns for each time window being considered. If we are unlucky here, this 
may involve another expensive network transfer, depending on if the transformer and window aggregator 
are co-located on the same machine.  Once the asset returns for each window are calculated, the results 
are sent onward to VaR calculation, which produces a single score for the asset based on the updated data. 
It is worth noting at this stage that all of this work will have been for naught if the initiating asset price 
point does not contribute to a window in the worst 5% (as the VaR calculation only cares about that 5%). 
Finally, assuming that the VaR value for the asset has changed, then the new value will be sent to another 
transformer, to calculate aggregate VaR for each customer’s portfolio that holds the asset.   

 

 

Figure 8: Naive VaR Flink Topology 

 

To summarize, there are four principles that should be followed when designing a good solution to this 
problem, which the above design fails under: 

1. We want to minimise the amount of processing that occurs when each asset price update arrives, 
since this happens very frequently. 
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2. We should only trigger the re-calculation of VaR if we have good reason to believe that this will 
result in the VaR score for an asset to change. Practically, this means we should only trigger 
calculation at the end of a time window, and only if the current window is part of the worst 5%. 

3. We should avoid expensive table scans over large tables. 
4. We should avoid transferring large amounts of data over the network. 

 

Given these principles, let us now consider a superior topology that utilises the INFINITECH streaming 
engine to solve these issues. Figure 3 illustrates an alternative Flink topology solution that integrates 
dynamic tables and continuous queries over the INFINITECH data layer (i.e., the INFINISTORE). As with the 
previous topology, we ingest a stream of asset pricing updates over time as a stream. However, instead of 
using this as a trigger to start the process of recalculating VaR, we instead assign time window labels that 
we can use to structure processing up-front. With these labels in place, we can then leverage the new 
remote dynamic table functionality provided by the INFINISTORE to ‘push-down’ both the storage of the 
asset pricing data and the incremental calculation of asset returns at the end of each time window into the 
store itself. In this way, we never need to transfer a large batch of asset pricing data across the network. 
Moreover, the INFINISTORE in conjunction with Flink’s continuous query semantics means that processing 
is incremental and localized to only the window of current interest, avoiding large table scans and 
redundant computation. Finally, dynamic tables can also be easily pipelined back into stream processing 
within Flink, where the ‘events’ emitted are the updates made to the table. In this case, an update to the 
Dynamic Returns Per Time Window Table indicates that the return for an asset has been calculated for a 
new time window, which acts as a more useful trigger for re-calculation of VaR for that asset. Overall, this is 
a much more efficient and scalable topology that can handle high volume streams of asset prices, as well as 
parallelism in computation across assets. 

 

 

Figure 9: VaR Calculation Topology using the Infinitech Streaming Engine 
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8 Conclusions 
This report documented the wok that has been carried out in the scope of task T3.3 “Integrated Querying 
of Streaming Data and Data at Rest” at this phase of the project. The main objective of this task is to 
implement a data framework that can provide a unified manner for accessing data that can be considered 
both streaming and data-at-rest at the same time, thus allowing the correlation of stream and batch 
processing in an effective way. This is very important as it will remove the current obstacles and limitations 
of existing solutions that promise to deliver this functionality, however they fail due to the inherit barriers 
for accessing static data effectively so that they can be used in real-time for streaming processing. As we 
explained, the high rate of data ingestion that comes from a stream cannot be served by traditional data 
management systems, and as a result, most of the system integrators are using data queues as an interim 
layer for pushing data from a stream, while a consumer process periodically takes data from the queue and 
ingest them to the datastore in what is called micro batches. This has the drawback that data analysts 
cannot apply their AI algorithms in real-data and in fact, they can only provide near real-time business 
intelligence. Another drawback is the need to combine streaming data with information that has been 
retrieved from aggregation operations over the static data, which are time consuming. Modern solutions 
usually cache this information so that it can be instantly available to the stream processing engine, with the 
drawback of losing data consistency, when the dataset is being frequently modified at the same time. 

This report firstly provided an analysis over the state-of-the-art of streaming processing frameworks, and 
analyzed the current status of this ecosystem. We decided to use Apache Flink as the core of the 
INFINITECH unified query processing framework, as it is a popular solution with lots of documentation that 
also provides some very important functionalities: it has been initially designed without the support of 
stateful operations and fault-tolerance, so that it can be easily scaled out. At its current version, it provides 
the support of additional operators that are stateful, and defines several levels of APIs for context event 
processing on the very low level, for streaming processing using DataStreams and the ability to write SQL 
statements for query processing on its higher level Table API. Tables can be transformed to data streams 
and vice versa, thus allowing for the correlation of streaming and data processing. However, the 
implementation of the stateful operations requires that objects resign in memory and being updated by the 
Apache Flink framework, with all the aforementioned barriers. 

As the scope of this task is to provide the integrated query processing framework of the INFINITECH 
platform, it became obvious that our framework will have to rely on the unique characteristics of the data 
management layer of the platform itself: the support of hybrid transactional and analytical processing, the 
online aggregations and the polyglot capabilities. The highly scalable transactional management of the data 
repository allows for data ingestion in very high rates, which is what a streaming channel requires. We can 
remove now the interim data queue and insert data directly to the storage. But this is not the only benefit 
from using our own data storage layer. HTAP allows for performing analytical query processing on live data, 
as they are being modifying by operational workloads, and as a result, gives the ability for executing AI 
algorithms on real data. Real time BI can be now achieved by delegating the need for maintaining Flink’s 
materialized views down to the data table of the datastore. This ensures data consistency, as the 
transactional semantics are provided by the database itself, rather than relying on the streaming 
framework which simply maintains the sequence of the modified operations, but does not guarantees the 
serializability of the order of execution (in terms of a database transaction). Moreover, it allows for the 
streaming engine to effectively scale out, which cannot be done when sharing content such as materialized 
views between different Flink sessions. Additionally, the online aggregations of INFINITECH allow to execute 
aggregation statements (i.e., average, summary, count, etc.) with a complexity of O (1) instead of O(n), as 
supposed by the need for scanning the entire dataset. Therefore, the streaming operators can directly 
query the datastore for such information, instead of caching those values and lose the consistency of the 
data. 

In order to integrate the components of INFINITECH that provide those characteristics with Apache Flink, 
we designed and implemented the INFINITECH Flink connector that implements those operations that can 
be used by the framework. We achieved to move the state of the stateful Flink operations down to the data 



D3.8 – Data Streaming and Data at Rest Queries Integration - III 

H2020 – Project No. 856632   © INFINITECH Consortium           Page 48 of 50 

management layer, so that those operations can be now considered stateless and can easily scale out. Flink 
now does not have to maintain any state and can be scale out independently, while the data management 
layer has been also designed to scale horizontally, as explained in the deliverables of task T3.1. Therefore, 
we claim that we have no data bottleneck in our solution. Finally, as the definition of the pilot needs and 
requirements for their integrated solutions have matured during this phase of the project, we took the 
generic use case described in the first version of this document, and made it more concrete, trying to 
address the needs for a specific pilot, pilot#2, of the INFINITECH project. We illustrated how our solution 
can remove 4 important technological obstacles that this pilot would have normally faced. 

Finally, it is important to highlight the interconnection between different tasks of the technical WPs of 
INFINITECH. The technology implemented in this task makes use of the high rate data ingestion capabilities 
implemented in T3.1, the polyglot query processing implemented in T3.2, the online aggregates 
implemented in T5.3 and the incremental analytics implemented in T5.2. Moreover, it is the base for the 
technological advancements implemented in T3.4. Technological outcomes of this task, like the Flink 
Operator, have been already incorporated into LeanXcale’s product, opening new opportunities to establish 
Proof-of-Concepts with new potential customers in the field of streaming query processing. 

 

 

 

Table 3: Conclusions (TASK Objectives with Deliverable achievements) 

Objectives Comment 

produce a unified framework for 
querying streaming data and data 
at rest 

The proposed solution offers a framework that allows integrated 
query processing over streaming data and data at-rest, using Apache 
Flink as the core, and our INFINISTORE Flink connector as the bridge 
to the data management layer. 

provide an SQL-based framework 
to correlate streaming tuples with 
the contents of the database 

With the use of the Table API, the user can define materialized views 
and submit SQL relational algebraic operations, that will be pushed 
down to the database, via our Flink connector. 

make use of correlated streaming 
and static data to update the 
database based on the contents of 
the incoming streams. 

In this task, we went a step beyond this objective, as we are not only 
capable of correlated streaming and static data to update the 
database content, but the database itself can send a stream of data, 
using the incremental analytics developed under T5.2 to further allow 
the streaming processing framework to make use of this in its 
deployed operators 

provide the means for querying 
streaming data and data at rest in 
an integrated fashion 

We relied on a popular streaming processing framework at the core of 
the INFINITECH offering in order to have this integrated query 
processing and we’ve prepared recipes for the deployment using the 
INFITECH way of deployments (defined in WP6) to allow the ease 
integration with other INFINITECH offerings 
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Table 4: Conclusions – (map TASK KPI with Deliverable achievements) 

KPI Comment 

Increase in parallelization of 
stateful analytics 

Target Value> = 100% 

Even if this KPI is not targeting the work carried out under this task, its 
outcomes however will be used as the technology pillar of the work 
that is currently carried out under the scope of T3.4 that this KPI is 
targeting. Towards this, our integrated query processing framework 
based on the Apache Flink integrated with the INFINISTORE and its 
already adapted innovations, allow the data user to push down to the 
database all data intensive operators, removing the latency, being 
able to scale out effectively, and removing the state from the 
deployed operators. This allows to build stateful analytics, that can be 
parallelized, as their state can be now handled by the datastore itself. 
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