
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D4.11 – Blockchain Tokenization and Smart

Contracts – II

Revision Number 3.0

Task Reference T4.4

Lead Beneficiary IBM

Responsible Fabiana Fournier

Partners IBM, BOUN, ENG, GFT, and HPE

Deliverable Type Report (R)

Dissemination Level Public

Due Date 2021-07-31

Delivered Date 2021-07-30

Internal Reviewers GFT, CCA

Quality Assurance INNOV

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no 856632

Ref. Ares(2021)4879858 - 30/07/2021

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 39

Contributing Partners
Partner Acronym Role1 Author(s)2

IBM Lead Beneficiary Fabiana Fournier, Inna Skarbovsky

BOUN Contributor Can Ozturan, Alper Sen, Baran Kılıç

GFT Internal Reviewer Ernesto Troiano

CCA Internal Reviewer Paul Lefrere

INNOV Quality Assurance John Soldatos

Revision History
Version Date Partner(s) Description

0.1 2020-06-15 IBM ToC Version

0.2 2020-06-20 IBM Initial contributions to Sections 1 and 2

0.3 2020-06-30 BOUN Initial contribution to Section 3

0.4 2020-07-05 BOUN Final contribution to Section 3

0.5 2020-07-10 IBM Updated Sections 1-3

0.6 2020-07-13 IBM Section 4 and executive summary

1.0 2020-07-15 IBM First Version for Internal Review

1.1 2021-07-22 GFT CCA Internal Review

2.0 2021-07-27 IBM Version for Quality Assurance

3.0 2020-07-29 IBM Version for Submission

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 39

Executive Summary
Encouraged by the success of the ERC 20 implementation on top of Hyperledger Fabric reported in the first
version of this deliverable, we started to work in parallel in two of the envisioned potential directions devised
as future steps: extension to more elaborated standards; and building a privacy preserving federated
machine learning framework in which tokens play the role of trading mechanism for insights in a data
marketplace.

The document in hand, titled D4.11 “Blockchain Tokenization and Smart Contracts – II” summarizes the work
realized within the context of T4.4 “Tokenization and Smart Contracts Finance and Insurance Services” in
work package 4 from month 15 to month 22 of the project around the implementation of the ERC 1155, the
most advanced Ethereum standard that includes both fungible and non-fungible tokens. The work on
evolving the privacy preserving federated machine learning framework, is the focus of D4.14 “Encrypted Data
Querying and Personal Data Market – II”.

The purpose of this deliverable is to present the design and implementation work of the ERC 1155 standard
on top of Hyperledger Fabric, the blockchain platform selected for the INFINITECH project. It is important to
note, that although the deliverable is of type “R” (only Report), we provide a full demonstrator of the token
workflows implemented as smart contracts in Fabric along with a recording of the work using an illustrative
example.

Digital tokens have started to get traction in the financial and insurance sectors in the last years. Our ultimate
goal is that corporates, banks, and FinTech companies will benefit from tokenization capabilities provided by
the INFINITECH platform in real use cases. One of the ways to do so, can be through the INFINITECH
marketplace. The INFINITECH project is developing and making available through its marketplace various
technological assets in the form of BigData, AI applications, and services that will be of interest to financial
institutions, government agencies, businesses, and end users. These assets can be represented as tokens on
a blockchain and offered to interested parties that can consume or trade them. A standardized token
interface like ERC-20 and ERC-1155 means these tokenized assets can be accessible by outside services which
support such standards. This will enable tokenized assets to be easily marketed at a global level.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 39

Table of Contents
1 Introduction ... 7

1.1 Objective of the Deliverable .. 7

1.2 Insights from other Tasks and Deliverables... 8

1.3 Structure .. 8

2 Background .. 9

3 ERC 1155 token standard implementation ... 11

3.1 Design .. 11

3.1.1 Workflows/use cases ... 12

3.1.2 Sequence Diagrams ... 24

3.2 Demonstrator .. 37

4 Conclusions .. 38

5 Appendix A: Literature ... 39

List of Figures
Figure 1 - Comparison between the UTXO and account models .. 10

Figure 2 – Get balance of sequence diagram .. 24

Figure 3 – Get balance of batch sequence diagram .. 25

Figure 4 – Transfer from sequence diagram ... 26

Figure 5 – Batch transfer from sequence diagram .. 27

Figure 6 – Set approval for all sequence diagram ... 28

Figure 7 – Is approved for all sequence diagram .. 28

Figure 8 – Mint sequence diagram .. 29

Figure 9 – Mint batch sequence diagram .. 30

Figure 10 – Burn sequence diagram .. 31

Figure 11 – Burn batch sequence diagram .. 32

Figure 12 – Set URI sequence diagram .. 33

Figure 13 – URI sequence diagram .. 34

Figure 14 – Batch transfer from multi recipient sequence diagram ... 35

Figure 15 – Broadcast token existence sequence diagram ... 36

Figure 16 – Client account ID sequence diagram .. 36

Figure 17 – Different types of transfers and their parameters. Note that P1-P5 are client account ids in base64-
encoded format ... 37

List of Tables
Table 1 – Standard ERC 1155 functions ... 11

Table 2 – Additional implemented functions .. 12

Table 3 – Balance Of use case ... 13

Table 4 - Balance of Batch use case ... 13

Table 5 – Transfer From use case .. 14

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 39

Table 6 – Batch Transfer From use case .. 15

Table 7 – Set Approval For All use case ... 16

Table 8 – Is Approved For All use case .. 17

Table 9 – Mint use case ... 17

Table 10 – Mint Batch use case ... 18

Table 11 – Burn use case ... 19

Table 12 – Burn Batch use case ... 19

Table 13 - Set URI use case .. 20

Table 14 – URI use case ... 21

Table 15 – Batch Transfer From Multi Recipient use case .. 22

Table 16 – Broadcast Token Existence use case .. 23

Table 17 – Client Account ID use case ... 23

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 39

Abbreviations/Acronyms
Abbreviation Definition

API Application Programming Interface

BC Blockchain

CA Certificate Authority

DoA Description of Action

DLT Distributed Ledger Technology

ERC Ethereum Request for Comments

M Month

MCC Multiversion Concurrency Control

MS Milestone

MVCC MultiVersion Concurrency Control

NFT Non-fungible token

R Report

SDK Software Development Kit

T Task

URI Uniform Resource Identifier

UTXO Unspent Transaction Output

WP Work Package

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 39

1 Introduction
The INFINITECH consortium decided to exploit the Hyperledger Fabric open source enterprise-grade
permissioned Distributed Ledger Technology (DLT) platform [1] as the underlying blockchain platform in the
project. However, Hyperledger Fabric (simply Fabric) lacks built-in support for tokens. Our first deliverable
(D) on tokenization, D4.10 “Blockchain tokenization and smart contracts – I”, submitted at month 14 (M14)
of the project, revolved around the implementation of the ERC 20 standard [2], the de-facto standard in many
financial and other blockchain applications. However, ERC 20 supports only fungible tokens. In this
deliverable we extend the work to include the ERC 1155 [3] standard, a superior token standard for Ethereum
based tokens that allows developers to create fungible, non-fungible, and semi-fungible tokens, all through
one smart contract in Hyperledger Fabric.

During the first stages of the project we investigated several potential directions for further research. These
are described extensively in D4.10. Two of these recognized threads were (refer to D4.10):

1. Extending the work to include additional standards, especially inclusion of non-fungible tokens
(NFTs).

2. Leveraging tokens and BC technology as a means of incentivization and crypto currency in a
marketplace for insights. The latter includes a framework for federated machine learning with privacy
preserving guarantees.

This deliverable describes the work carried out from M15 to M22 of the project around extending
Hyperledger Fabric (simply Fabric) to support tokenization (first point) by BOUN and IBM. D4.14 “Encrypted
Data Querying and Personal Data Market – II” to be submitted as well at M22 describes the work performed
from M15 to M22 of the project by IBM and FBK around point 2 and introduces our devised framework.

We assume the reader is familiar with DLTs and specifically Fabric. Therefore, BC basic terminology and
concepts such as peers, organizations, orderers, certificate authority (CA), channels, and chaincodes (smart
contracts in Hyperledger Fabric) are known to the reader and out of the scope for this document. For a
thorough understanding of how Fabric blockchain technology works, refer to the “Hands-on Blockchain with
Hyperledger” [4].

It should be noted that although this deliverable is typed as Report, we also provide an implementation and
demo of our work (refer to Section 3). Furthermore, the code, currently available at: https://gitlab.infinitech-
h2020.eu/blockchain/erc1155-tokenization, will be released to the open source community to enable
developers to leverage this work in building their own blockchain applications. The demonstrator can be
accessed through the INFINITECH marketplace at: https://marketplace.infinitech-
h2020.eu/infinitech/erc1155-token-smart-contract-for-hyperledger.

1.1 Objective of the Deliverable
The purpose of this deliverable is to report the outcomes of the work carried out within the context of Task
4.4 (T4.4) “Tokenization and Smart Contracts Finance and Insurance Services” from month 15 (M15) to M22
of the project in relation to the implementation of the ERC 1155 standard. In this second iteration, as
explained in the previous paragraph, the work has been carried out in two parallel threads that are the
continuation of two of the envisioned potential extensions of the work reported in D4.10 “Blockchain
Tokenization and Smart Contracts – I”, i.e., extension to a more mature and extensive tokens standard (ERC
1155) and the collaboration between Task 4.4 (T4.4) – Tokenization and Smart Contracts Finance and
Insurance Services and T4.5 – Secure and Encrypted Queries over Blockchain Data towards a trust-preserving
framework for federated learning.

Hence, the main objectives of the deliverable at hand are as follows:

• To document main characteristics of the ERC 1155 tokens standard.

https://gitlab.infinitech-h2020.eu/blockchain/erc1155-tokenization
https://gitlab.infinitech-h2020.eu/blockchain/erc1155-tokenization
https://urldefense.proofpoint.com/v2/url?u=https-3A__marketplace.infinitech-2Dh2020.eu_infinitech_erc1155-2Dtoken-2Dsmart-2Dcontract-2Dfor-2Dhyperledger&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=yzvrCHxl-mvvMiisIp6rq5poDzRmOrS6sgWYIh5Xvdw&m=wxU7W8R73iD75TvIwoLe_-WyHnh7eRjgxXlKUDNaH7I&s=57nApbbhruim4nb7VLEX3Q_njHpKiRk2inWJbYvhlUg&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__marketplace.infinitech-2Dh2020.eu_infinitech_erc1155-2Dtoken-2Dsmart-2Dcontract-2Dfor-2Dhyperledger&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=yzvrCHxl-mvvMiisIp6rq5poDzRmOrS6sgWYIh5Xvdw&m=wxU7W8R73iD75TvIwoLe_-WyHnh7eRjgxXlKUDNaH7I&s=57nApbbhruim4nb7VLEX3Q_njHpKiRk2inWJbYvhlUg&e=

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 39

• To implement the ERC 1155 standard on top of Hyperledger Fabric, thus enhancing the latter with
capabilities to support both fungible and non-fungible tokens.

• To demonstrate the feasibility of the approach by implementing a demonstrator around the work.

It should be noted that, according to the INFINITECH Description of Action (DoA), Task 4.4 lasts until M30,
and therefore another (last) version of the deliverable will be released at M30 with deliverable D4.12.
Although this deliverable is of type report (“R”), we include the description of the implemented functions as
well as the implementation and a demonstrator.

1.2 Insights from other Tasks and Deliverables
Deliverable D4.11 is released in the scope of Work Package 4 (WP4) “Interoperable Data Exchange and
Semantic Interoperability” activities, and documents the outcomes of the work performed within the context
of T4.4 “Tokenization and Smart Contracts Finance and Insurance Services” on extending the efforts carried
out during the first 14 months of the project and reported in the first iteration of the deliverable (D4.10).
Therefore, D4.11 heavily relies on D4.10, specifically the background and motivation for tokenization in the
financial and insurance sectors, as well as the introduction to the tokens world – key terminology and main
concepts. D4.11 expands one of the envisioned future directions in D4.10, i.e., the implementation of a more
mature tokens standard that supports both fungible and non-fungible tokens.

In addition, D4.11 is a blockchain-oriented deliverable, hence related to the two previous deliverables around
blockchain applications carried out in the scope of the INFINITECH project, i.e., D4.7 “Permissioned
Blockchain for Finance and Insurance – I” (submitted at M11) and D4.8 “Permissioned Blockchain for Finance
and Insurance – II” (submitted at M19).

1.3 Structure
This document is structured as follows:

• Section 1: introduces the document, describing the context of the outcomes of the work performed
within the task and highlighting its relation to other tasks and deliverables of the project;

• Section 2: provides a brief background;
• Section 3: details the implementation of the work; and
• Section 4 summarizes and concludes the document.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 39

2 Background
Just for the sake of completeness, we remind readers very briefly about some of the concepts used
throughout this document. For more details refer to D4.10.

Asset tokenization refers to the representation of any asset into its digital form for trading which can later be
bought, sold, exchanged or redeemed for any other digital or physical value.

Cryptographic tokens, or ‘tokens’ for short, are programmable digital units of value that are recorded on a
distributed ledger protocol such as a blockchain. Representing assets as tokens allows use of the blockchain
ledger to establish the unique state and ownership of an item, and the transfer of ownership using a
consensus mechanism that is trusted by multiple parties. As long as the ledger is secured, the asset is
immutable and cannot be transferred without the owner’s consent. Tokens can represent tangible assets,
such as goods moving through a supply chain or a financial asset being traded. Tokens can also represent
intangible assets such as loyalty points. Tokens can be fungible (that is, have the same value as other tokens
of the same class) or non-fungible (unique, not interchangeable), or a combination of the two. Because
tokens cannot be transferred without the consent of the owner, and transactions are validated on a
distributed ledger, representing assets as tokens allows reducing the risk and difficulty of transferring assets
across multiple parties.

Digitization of assets is a process in which the rights to an asset are converted into a digital token on a
blockchain. Ownership rights are transmitted and traded on a digital platform, and the real-world assets on
the blockchain are represented by digital tokens.

In D4.10 “Blockchain tokenization and smart contracts – I”, we gave a broad background to the tokenization
world. As we have previously stated in D4.10, we selected Ethereum standards due to their popularity and
to be compatible with the rest of the partners in the consortium that develop in Ethereum. To provide a
common form of tokens in Ethereum, a standard interface referred to as Ethereum Request for Comments
(ERC) was introduced. We chose to start with the ERC 20 Token Standard [2] which is the most widely used
and most general token standard that provides basic functionality to transfer tokens, as well as allows tokens
to be approved so they can be spent by another on-chain third party. It lists six mandatory and three optional
functions as well as two events to be implemented by conforming Application Programming Interface (API).
In the scope of D4.10 we have implemented the ERC 20 as chaincode (smart contract in Fabric jargon).

However, ERC 20 deals only with fungible tokens (interchangeable tokens), hence, a most natural extension
to the work was to extend it to include non-fungible tokens (unique, not interchangeable). ERC 1155 is a
standard interface for contracts that manage multiple token types. A single deployed contract may include
any combination of fungible tokens, non-fungible tokens or other configurations (e.g. semi-fungible tokens).

For tokens to be useful, they need to be transferable. The transfer of a token on a blockchain is initiated by
the owner, creating a transaction. This transaction informs the network about how much tokens are changing
hands and who the new owner is. In D4.10 we have also reviewed the two models for bookkeeping of token
transactions, namely UTXO (unspent transaction output) and the account model.

The UTXO model only records transaction receipts. The UTXO model does not incorporate accounts or wallets
at the protocol level. The model is based entirely on individual transactions, grouped in blocks. Since there is
no concept of accounts or wallets on the protocol level, the “burden” of maintaining a user’s balance is
shifted to the client-side. The sum of all the unspent transaction outputs it can control determines the current
balance. The account based transaction model represents assets as balances within accounts, similar to bank
accounts.

On the other hand, a transaction in the account based model triggers nodes to decrement the balance of the
sender’s account and increment the balance of the recipient’s account. In an account based model, there is
an account for each participant that holds a balance of tokens. A mint transaction creates tokens in an
account, while a transfer transaction debits the caller's account and credits another account. The account
model keeps track of all balances, as a global state. This state can be understood as a database of all accounts,
private key and contract code controlled, and the current balances of the different assets on the network.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 39

While the account model is more intuitive and easier when it comes to enabling smart contracts, adding and
subtracting balances makes it easier for developers to create transactions that require state information or
involve multiple parties), the UTXO allows for the simpler parallelization of transactions in smart contracts.

Figure 1 illustrates the main difference between the two models. Let’s assume that Bob has $5 in banknotes
and $5 in coupons. Bob transfers $7 to Alice and pays a $0.07 fee to Charlie. In the UTXO model, the $7 and
$0.07 are the outputs of this transaction, as well as an additional output of $2.93 to Bob himself in change.
In the account model Bob had a total of 10$ from which he payed $7.07 and his account balance results in
2.93$.

Figure 1 - Comparison between the UTXO and account models

Multiversion concurrency control (MCC or MVCC), is a concurrency control method commonly used by
database management systems to provide concurrent access to the database. In blockchain, an MVCC
conflict happens when two (or more) transactions attempt to write the same key in the ledger at the same
time (key collision).

One of the common solutions to avoid collisions is batching. This technique relies on the fact that a chaincode
can update the same key multiple times in the same execution. So, the application level collects some
transactions and sends them as one (array or list) to the peer/s. Instead of sending individual transactions to
the peer, the Software Development Kit (SDK) would batch transactions and send them to the chaincode and
the chaincode is the one responsible for aggregating the updates from the transactions in the batch.

Chaincode must know how to handle the list of transactions and execute all of them at the same time. The
result of the simulation will be the latest value from all transactions, and this value will be objective. When
the block is committed, the application will take the new batch from the queue and will send it to the peers.
So, while the block is committed, the application just collects new transactions and puts them in the queue.
By fine tuning the size of the batch, a very high throughput can be achieved.

As will be explained in Section 3, in our ERC 1155 implementation, we applied the UTXO model to avoid
collisions in Fabric while batching transactions to achieve maximum throughput.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 39

3 ERC 1155 token standard implementation
After successfully implementing the ERC 20 standard as chaincode in Fabric, the next step was the
implementation of the ERC 1155 on top of Fabric which is the most advanced Ethereum standard, due to its
capability of allowing mix of multiple fungible and non-fungible token types in a single contract. ERC 1155
generalizes fungible ERC 20 and non-fungible ERC 721 [5] token standards by combining them under a single
contract that offers multiple token types with multiple quantities. This section describes the design work and
the development of the blockchain chaincodes.

3.1 Design
In addition to the six functions required by the ERC 1155 standard [3] as shown in Table 1, nine additional
functions were implemented; these are given in Table 2 and explained below.

In Hyperledger Fabric, the distributed state is maintained as a versioned key-value store. When the same key
is going to be updated in the same block, there can be a key conflict (collision) which will lead to transaction
failure. This has some performance implications for the special case in which a user wants to issue a number
of token transfers to multiple recipients. One cannot simply make multiple updates to the account balance
of the user that will go into the same block. This is because such a scenario will update the same key value
(the same account balance) in the same block and hence lead to transaction failures. To resolve this, one can
wait some time so that the next transfer transaction to the next recipient will go into the next block. This,
however, will lead to serious transaction-throughput performance degradation.

In order to solve the key conflict problem, our ERC 1155 implementation has been designed so that it uses
the UTXO model that stores spent and unspent amounts of tokens and their owners. An additional
BatchTransferFromMultiRecipient function (Table 2) was introduced so that if a user wants to make several
transfers to multiple recipients, all of these can be batched together and can go into the same block. As a
result, high transaction-throughput performance of the Hyperledger Fabric can be maintained.

The standard functions (Table 1) implement querying of token balance, transfer of single/multiple token
type(s) with multiple quantities to single/multiple recipient(s).

Table 1 – Standard ERC 1155 functions

Function Description

BalanceOf(owner, id) Get the balance of the account “owner” for token “id”

BalanceOfBatch(owners, ids): Get the balance of multiple account/token pairs

TransferFrom(from, to, id, value) Transfers the tokens of type “id” of quantity “value” from the
account “from” to the account to “to”

BatchTransferFrom(from, to, ids, values) Transfers multiple tokens of type “id” of quantity “value”
from the account “from” to account “to”

SetApprovalForAll(operator, approved) Enable or disable “approval” for a third party (“operator”) to
manage all of the caller's tokens.

IsApprovedForAll(owner, operator): Queries the approval status of an “operator” for a given
“owner”

Additional functions implemented beyond the ones required by the standard are token minting functionality,
querying of client id, querying and setting of URI and a batched token transfer to multiple recipients as shown
in Table 2. These are general purpose functions that anyone who deploys a token contract may expect to
find/use in a token contract.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 39

Mint/Burn – although not required, they are necessary to change the supply of tokens and create new
fungible or non-fungible tokens. In a real implementation, they will be implemented unless the supply of the
tokens is fixed beforehand. MintBatch/BurnBatch is only implemented to complement the
TransferFrom/BatchTransferFrom.

ClientAccountID is a utility function and is special for Fabric because we do not have wallet addresses in Fabric
and users need to know their account ID to transfer tokens.

SetURI and URI are optional in ERC 1155 (optional extension).

BatchTransferFromMultiRecipient is required to avoid key conflicts as explained above. This problem does
not exist in Ethereum because in Ethereum, the transactions are ordered before they are executed.

BroadcastTokenExistence is also explained in ERC 1155 but it is not required (optional extension). It is only
used if a token minter wants to announce the existence of a token without minting it.

Table 2 – Additional implemented functions

Function Description

Mint(account,id,amount) Mints and deposits the token of type “id” of quantity
“amount” to the account “account”

MintBatch(account, ids, amounts) Mints and deposits multiple tokens of type “id” of quantity
“amount” to the account “account”

Burn(account, id, amount): Withdraws the token of type “id” of quantity “amount” from
the account “account” and burns the token

BurnBatch(account, ids, amounts): Withdraws multiple tokens of type “id” of quantity “amount”
from the account “account” and burns the tokens

BatchTransferFromMultiRecipient(from,
to, ids, values):

Transfers multiple tokens of type “ids” of quantity “values”
from the account “from” to accounts “to”

ClientAccountID() Returns the client account id

URI(id) Returns the URI for token type “id”

SetURI(uri) Sets the URI

BroadcastTokenExistence(id) Emits TransferSingle event from “0x0” to “0x0”, with the
token creator as “operator”, and a value of 0 for the token of
type “id”

Chaincode was developed in the Go language. We utilized the test network that is available at
https://github.com/hyperledger/fabric-samples/tree/main/test-network to deploy the token smart
contract. This network has two organizations and one orderer, one peer per organization, and one certificate
authority (CA) per organization. We used Fabric version 2.3.1 and Fabric CA version 1.4.9.

3.1.1 Workflows/use cases

We follow the notation of the use cases and sequence diagrams introduced in D4.7 to specify the use cases
and sequence diagrams for the functions developed.

3.1.1.1 Use Case: Balance Of
Returns the current balance for the given user ID and token ID.

https://github.com/hyperledger/fabric-samples/tree/main/test-network

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 39

Table 3 – Balance Of use case

Stakeholders
involved

Anyone with read access.

Pre-conditions The requested account exists, the requesting party is a legal end-user in
the network and has read access.

Post-conditions The invoker receives a reply of the balance of the requested account for
given token ID.

Data Attributes Account address, token ID.

Normal Flow 1. The authentication and access roles for the requester are
determined.

2. The existence of the requested account is determined.

3. The current balance of the requested account for the requested
token ID is returned.

Pass Metrics Requested information is returned to the invoker.

Fail Metrics Requested information cannot be returned if:

• The invoker has no access.

• The requested account does not exist.

3.1.1.2 Use Case: Balance of Batch
Returns the current balance for the given user IDs and token IDs.

Table 4 - Balance of Batch use case

Stakeholders
involved

Anyone with read access

Pre-conditions The requested accounts exist, the requesting party is a legal end-user in
the network and has read access.

Post-conditions The invoker receives a reply of the balances of the requested accounts
for the given token IDs

Data Attributes Account addresses, token IDs

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 39

Normal Flow 1. The authentication and access roles for the requester are
determined

2. The existence of the requested accounts are determined

3. The current balance of the requested accounts for the requested
token IDs are returned

Pass Metrics Requested information is returned to the invoker

Fail Metrics Requested information cannot be returned if:

• The invoker has no access.

• The requested accounts do not exist.

3.1.1.3 Use Case: Transfer From
Transfers the specified amount of tokens for a given token ID from the sender’s account to the recipient’s
account, adjusts the new balance of the sender’s account, the new balance of the recipient’s account.

Table 5 – Transfer From use case

Stakeholders
involved

Invoker (operator), sender (from), recipient (to).

Pre-conditions • The sender’s account exists, and has the sufficient amount of tokens.

• The invoker is either token owner (sender) or is approved to transfer
for the given token ID and sender account.

• The invoker party is a legal end-user in the network and has read
access, so it is approved to transfer tokens from owner’s account.

Post-conditions The sender’s balance and the recipient’s balance are updated with the
new amount of tokens, the transaction is written on the chain.

Data Attributes Sender’s account address, recipient’s address, token ID, amount of
tokens to transfer.

Normal Flow 1. The authentication and access roles for the invoker (spender)
account are determined.

2. The existence of the sender’s account is determined.

3. The existence of the recipient’s account is determined.

4. Enough balance of tokens in the sender’s account is verified

5. The invoker’s permission to transfer is determined.

6. The new balances for the sender’s account and recipient’s accounts
are calculated and updated on the ledger.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 39

Pass Metrics 1. The balances in the world state are updated.

2. The transaction is available on the chain.

Fail Metrics Requested information cannot be returned if:

• The sender’s account does not exist.

• The recipient’s account does not exist.

• The sender’s account balance does not have enough tokens.

• The invoker has no access or was not permitted by sender (using

SetApprovalForAll workflow) to transfer tokens on their behalf.

3.1.1.4 Use Case: Batch Transfer From
Transfers the specified amount of tokens for the given token IDs from the sender’s account to the recipient’s
account, adjusts the new balance of the sender’s account, the new balance of the recipient’s account.

Table 6 – Batch Transfer From use case

Stakeholders
involved

Invoker (operator), sender (from), recipient (to)

Pre-conditions • The sender’s account exists, and has the sufficient amount of tokens.

• The invoker is either token owner (sender) or is approved to transfer
for the given token IDs and sender account.

• The invoker party is a legal end-user in the network and has read
access, it is approved to transfer tokens from owner’s account.

Post-conditions The sender’s balance and the recipient’s balance are updated with the
new amount of tokens, the transaction is written on the chain.

Data Attributes Sender’s account address, recipient’s address, token IDs, amounts of
tokens to transfer.

Normal Flow 1. The authentication and access roles for the invoker (spender)
account are determined.

2. The existence of the sender’s account is determined.

3. The existence of the recipient’s account is determined.

4. Enough balance of tokens in the sender’s account is verified

5. The invoker’s permission to transfer is determined.

6. The new balances for the sender’s account and recipient’s accounts
are calculated and updated on the ledger.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 39

Pass Metrics 1. The balances in the world state are updated.

2. The transaction is available on the chain.

Fail Metrics Requested information cannot be returned if:

• The sender’s account does not exist.

• The recipient’s account does not exist.

• The sender’s account balance does not have enough tokens.

• The invoker has no access or was not permitted by sender (using

SetApprovalForAll workflow) to transfer tokens on their behalf.

3.1.1.5 Use Case: Set Approval For All
Enables or disables approval for a third party (operator) to manage all of the invoker's tokens.

Table 7 – Set Approval For All use case

Stakeholders
involved

Invoker, approved account (operator).

Pre-conditions • The invoker’s account exists.

Post-conditions The operator account is either approved or disapproved to manage all of
the invoker's tokens.

Data Attributes Operator account address, approval or disapproval.

Normal Flow 1. The authentication and access roles for the invoker account are
determined.

2. The operator account is set as approved or disapproved.

Pass Metrics 1. The approval status for the operator address is set.

2. The transaction is available on the chain.

Fail Metrics Requested information cannot be returned if:

• The invoker’s account does not exist

3.1.1.6 Use Case: Is Approved For All
Queries the approval status of an operator for a given owner.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 39

Table 8 – Is Approved For All use case

Stakeholders
involved

Invoker, owner account, operator account

Pre-conditions The invoker’s account exists.

Post-conditions The invoker receives a reply of approval status for an operator for a given
owner.

Data Attributes Owner account address, operator account address.

Normal Flow 1. The authentication and access roles for the invoker account are
determined.

2. Approval status is returned.

Pass Metrics Requested information is returned to the invoker.

Fail Metrics Requested information cannot be returned if:

• The invoker’s account does not exist.

3.1.1.7 Use case: Mint
Mints and transfers tokens to a given address for a given token ID.

Table 9 – Mint use case

Stakeholders
involved

An account with minter role.

Pre-conditions ● The invoker has minter role.

● Mint amount is positive.

Post-conditions The recipient’s balance is updated with the new amount of token, the
transaction is written on the chain.

Data Attributes Recipient account address, token ID, token amount.

Normal Flow 1. The authentication and access roles for the invoker account are

determined.

2. Non-negative amount of mint tokens is verified.

3. The recipients’s balance is updated with the amount of minted

tokens for the given token ID.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 39

Pass Metrics 1. The balances in the world state are updated.

2. The transaction is available on the chain.

Fail Metrics Requested information cannot be returned if:

● The invoker’s account does not exist.

● The invoker account does not belong to organization allowed to

mint.

● The mint amount specified in the function arguments is negative.

3.1.1.8 Use case: Mint Batch
Mints and transfers tokens to a given address for a given token IDs.

Table 10 – Mint Batch use case

Stakeholders
involved

An account with minter role.

Pre-conditions ● The invoker has minter role.

● Mint amount is positive.

Post-conditions The recipient’s balance is updated with the new amount of token, the
transaction is written on the chain.

Data Attributes Recipient account address, token IDs, token amounts.

Normal Flow 1. The authentication and access roles for the invoker account are

determined.

2. Non-negative amount of mint tokens is verified.

3. The recipient’s balance is updated with the amount of minted

tokens for the given token IDs.

Pass Metrics 1. The balances in the world state are updated.

2. The transaction is available on the chain.

Fail Metrics Requested information cannot be returned if:

● The invoker’s account does not exist.

● The invoker account does not belong to organization allowed to

mint.

● The mint amount specified in the function arguments is negative.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 39

3.1.1.9 Use case: Burn
Withdraws tokens from a given address for a given token ID and burns the tokens.

Table 11 – Burn use case

Stakeholders
involved

An account with burner role.

Pre-conditions ● The invoker has burner role.

● Burn amount is positive.

● The account whose tokens are withdrawn has enough tokens to

burn.

Post-conditions The account balance is updated with the new amount of tokens, the
transaction is written on the chain.

Data Attributes Account address, token ID, token amount.

Normal Flow 1. The authentication and access roles for the invoker account are

determined.

2. Non-negative amount of burned tokens is verified.

3. The balance of account is checked for sufficient tokens.

4. The account balance is updated with the amount of burned tokens

for the given token ID.

Pass Metrics 1. The balances in the world state are updated.

2. The transaction is available on the chain.

Fail Metrics Requested information cannot be returned if:

● The invoker’s account does not exist.

● The invoker account does not belong to the organization allowed to

burn.

● The burn amount specified in the function arguments is negative.

3.1.1.10 Use case: Burn Batch
Withdraws tokens from a given address for the given token IDs and burns the tokens

Table 12 – Burn Batch use case

Stakeholders
involved

An account with burner role.

Pre-conditions ● The invoker has burner role.

● Burn amounts are positive.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 39

● The account whose tokens are withdrawn has enough tokens to

burn.

Post-conditions The account balance is updated with the new amount of tokens, the
transaction is written on the chain.

Data Attributes Account address, token IDs, token amounts.

Normal Flow 1. The authentication and access roles for the invoker account are

determined.

2. Non-negative amount of burned tokens is verified.

3. The balance of account is checked for sufficient tokens.

4. The account balance is updated with the amount of burned tokens

for the given token ID.

Pass Metrics 1. The balances in the world state are updated.

2. The transaction is available on the chain.

Fail Metrics Requested information cannot be returned if:

● The invoker’s account does not exist.

● The invoker account does not belong to the organization allowed to

burn.

● The burn amounts specified in the function arguments are negative.

3.1.1.11 Use case: Set URI
Sets the URI for tokens.

Table 13 - Set URI use case

Stakeholders
involved

An account with minter/burner role.

Pre-conditions ● The invoker has minter/burner role.

Post-conditions The URI is updated with the given URI, the transaction is written on the
chain.

Data Attributes New URI.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 39

Normal Flow 1. The authentication and access roles for the invoker account are

determined.

2. New URI is set.

Pass Metrics 1. The URI in the world state are updated.

2. The transaction is available on the chain.

Fail Metrics Requested information cannot be returned if:

● The invoker’s account does not exist,

● The invoker’s account does not have the required role.

3.1.1.12 Use case: URI
Queries the URI for tokens.

Table 14 – URI use case

Stakeholders
involved

Anyone with read access

Pre-conditions ● The invoker’s account exists.

Post-conditions The invoker receives a reply of URI.

Data Attributes Token ID

Normal Flow 1. The authentication and access roles for the invoker account are

determined.

2. URI is returned.

Pass Metrics Requested information is returned to the invoker.

Fail Metrics Requested information cannot be returned if:

● No URI is previously set,

● The invoker’s account does not exist.

3.1.1.13 Use Case: Batch Transfer From Multi Recipient
Transfers the specified amount of tokens for the given token IDs from the sender’s account to the recipient’s
accounts, adjusts the new balance of the sender’s account, the new balance of the recipient’s account.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 39

Table 15 – Batch Transfer From Multi Recipient use case

Stakeholders
involved

Invoker (operator), sender (from), recipients (tos)

Pre-conditions • The sender’s account exists, and has the sufficient amount of

tokens.

• The invoker is either the token owner (sender) or is approved to

transfer for the given token IDs and sender account.

• The invoker party is a legal end-user in the network and has read

access, and is approved to transfer tokens from owner’s account.

Post-conditions The sender’s balance and the recipient’s balance are updated with the
new amount of tokens, the transaction is written on the chain.

Data Attributes Sender’s account address, recipient’s addresses, token IDs, amounts of
tokens to transfer.

Normal Flow 1. The authentication and access roles for the invoker (spender)
account are determined.

2. The existence of the sender’s account is determined.

3. The existence of the recipients’ accounts are determined.

4. Enough balance of tokens in the sender’s account is verified

5. The invoker’s permission to transfer is determined.

6. The new balances for the sender’s account and each of the
recipients’ accounts are calculated and updated on the ledger.

Pass Metrics 1. The balances in the world state are updated.

2. The transaction is available on the chain.

Fail Metrics Requested information cannot be returned if:

• The sender’s account does not exist,

• A recipient’s account does not exist,

• The sender’s account balance does not have enough tokens,

• The invoker has no access or was not permitted by sender

(using SetApprovalForAll workflow) to transfer tokens on their

behalf.

3.1.1.14 Use Case: Broadcast Token Existence
Emits TransferSingle event from “0x0” to “0x0”, with the token creator as “operator”, and a value of 0 for a
given token ID. A minter account can use this function to announce a new token without minting the token.

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 39

The existing tokens do not need to be announced since “Mint”, “MintBatch” functions already create Transfer
events. Third parties can detect the existence of this new token by listening to the Transfer events.

Table 16 – Broadcast Token Existence use case

Stakeholders
involved

An account with minter/burner role.

Pre-conditions ● The invoker has minter/burner role.

Post-conditions TransferSingle event is emitted.

Data Attributes Token ID.

Normal Flow 1. The authentication and access roles for the invoker account are

determined.

2. TransferSingle event with from “0x0” to “0x0”, with the token

creator as “operator”, and a value of 0 is emitted for a given token

ID.

Pass Metrics TransferSingle event is emitted.

Fail Metrics Requested information cannot be returned if:

● The invoker has no minter/burner role.

3.1.1.15 Use Case: Client Account ID
Returns the ID of the account. The client ID is simply a base64-encoded concatenation of the issuer and
subject from the client identity's enrolment certificate.

Table 17 – Client Account ID use case

Stakeholders
involved

Account owner

Pre-conditions The owner account exists, the requesting party is a legal end-user in the
network and has read access

Post-conditions The invoker receives a reply of client ID

Data Attributes None

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 39

Normal Flow 1. The authentication and access roles for the requester are
determined.

2. The existence of the owner account is determined.

3. Client ID is returned.

Pass Metrics Requested information is returned to the invoker

Fail Metrics Requested information cannot be returned if:

• The owner account does not exist.

3.1.2 Sequence Diagrams

In the previous section all the relevant use cases of the designed blockchain application were documented.
Henceforth, we present the sequence diagram for each use case, depicting the interactions between the
stakeholders and the components of the designed blockchain solution, as well as the interactions between
the various components. As in the previous section, we follow the notation of the sequence diagrams
introduced in D4.7.

3.1.2.1 Get balance of
In the Balance Of use case, an authorized account in the blockchain network queries the balance of a specified
account for a token ID. Upon the authentication of the user and their role as a reader, the tokenization client
interacts with blockchain components in order to check the balance of the specified account for a given token
ID by querying and reading the query result upon decrypting them (Figure 2).

Figure 2 – Get balance of sequence diagram

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 39

3.1.2.2 Get balance of batch
In Balance Of Batch use case, an authorized account in the blockchain network queries the balance of a
specified account for the given token IDs. Upon the authentication of the user and their role as a reader, the
tokenization client interacts with blockchain components in order to check the balance of the specified
account for the given token IDs by querying and reading the query result upon decrypting them (Figure 3).

Figure 3 – Get balance of batch sequence diagram

3.1.2.3 Transfer from
In the Transfer From use case, the transfer of tokens of a token ID from one account to another is handled.
The tokenization client interacts with the blockchain components in order to retrieve the accounts balance
from the ledger, decrypt the query result and update the balance of both accounts, decreasing the amount
of tokens in the origin account and increasing the amount of tokens in the recipient account through a new
transaction in the ledger (Figure 4).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 39

Figure 4 – Transfer from sequence diagram

3.1.2.4 Batch transfer from
In the Batch Transfer From use case, the transfer of tokens of multiple token IDs from one account to another
is handled. The tokenization client interacts with the blockchain components in order to retrieve the accounts
balance from the ledger, decrypt the query result and update the balance of both accounts, decreasing the
amount of tokens in the origin account and increasing the amount of tokens in the recipient account through
a new transaction in the ledger (Figure 4).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 39

Figure 5 – Batch transfer from sequence diagram

3.1.2.5 Set approval for all
In the Set Approval For All use case, an account approves another account (operator) to manage all of the
caller’s tokens. the transfer of tokens of multiple token IDs from one account to another is handled. The
tokenization client interacts with the blockchain components in order to enable or disable the approval of
the operator account (Figure 6).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 39

Figure 6 – Set approval for all sequence diagram

3.1.2.6 Is approved for all
In the Is Approved For All use case, an authorized account on the blockchain network queries whether an
account is approved to handle another account’s (operator) tokens. Upon the authentication of the user and
their role as a reader, the tokenization client interacts with blockchain components in order to check the
approval status by querying and reading the query results upon decrypting them (Figure 6).

Figure 7 – Is approved for all sequence diagram

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 39

3.1.2.7 Mint
In the Mint use case, minting of new tokens for a given token ID by an account with the “Minter” role is
performed. The tokenization client interacts with the blockchain components, which in turn, verify that the
invoking account has a Minter role and check the balance of the account that will receive the minted tokens.
The balance of the account is increased through a new transaction in the ledger (Figure 8).

Figure 8 – Mint sequence diagram

3.1.2.8 Mint batch
In the Mint Batched use case, minting of new tokens for the given token IDs by an account with the “Minter”
role is performed. The tokenization client interacts with the blockchain components, which in turn, verify
that the invoking account has a Minter role and check the balance of the account that will receive the minted
tokens. The balance of the account is increased through a new transaction in the ledger (Figure 9).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 39

Figure 9 – Mint batch sequence diagram

3.1.2.9 Burn
In the Burn use case, burning of tokens for a given token ID by an account with the “Burner” role is performed.
The tokenization client interacts with the blockchain components, which in turn, verify that the invoking
account has a Burner role and check the balance of the account whose tokens will be burned. The balance
of the account is decreased through a new transaction in the ledger (Figure 10).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 39

Figure 10 – Burn sequence diagram

3.1.2.10 Burn batch
In the Burn Batch use case, burning of tokens for the given token IDs by an account with the “Burner” role is
performed. The tokenization client interacts with the blockchain components, which in turn, verify that the
invoking account has a Burner role and check the balance of the account whose tokens will be burned. The
balance of the account is decreased through a new transaction in the ledger (Figure 11).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 39

Figure 11 – Burn batch sequence diagram

3.1.2.11 Set URI
In the Set URI use case, the minter account sets a URI for tokens. The tokenization client interacts with the
blockchain components and verifies that the invoking account has a Minter role and sets the URI through a
new transaction in the ledger (Figure 12).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 39

Figure 12 – Set URI sequence diagram

3.1.2.12 URI
In the URI use case, an authorized account in the blockchain network queries the URI for tokens. Upon the
authentication of the user and their role as a reader, the tokenization client interacts with blockchain
components in order to check the URI by querying and reading the query result upon decrypting them (Figure
13).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 39

Figure 13 – URI sequence diagram

3.1.2.13 Batch transfer from multi recipient
In Batch Transfer From Multi Recipient use case, the transfer of tokens of multiple token IDs from one account
to other accounts is handled. The tokenization client interacts with the blockchain components in order to
retrieve the accounts balance from the ledger, decrypt the query result and update the balance of all
accounts, decreasing the amount of tokens in the origin account and increasing the amount of tokens in the
recipient accounts through a new transaction in the ledger (Figure 14).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 39

Figure 14 – Batch transfer from multi recipient sequence diagram

3.1.2.14 Broadcast Token Existence
In Broadcast Token Existence use case, a minter emits a TransferSingle event to inform listening parties about
the existence of a new token. The tokenization client interacts with the blockchain components and verifies
that the invoking account has a Minter role. A TransferSingle event is emitted through a new transaction in
the ledger (Figure 15).

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 39

Figure 15 – Broadcast token existence sequence diagram

3.1.2.15 Client account ID
In the Client Account ID use case, an owner account in the blockchain network queries its own client account
id. Upon the authentication of the user and their role as a reader, the tokenization client interacts with
blockchain components in order to check the client ID of the owner account by querying and reading the
query result upon decrypting them (Figure 16).

Figure 16 – Client account ID sequence diagram

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 39

3.2 Demonstrator
Our demonstrator aims to illustrate different versions of the transfer functions available in ERC 1155 and in
what contexts they can be used. We assume that person P1 from organization1, Org1, deploys an ERC 1155
contract and is able to mint tokens. There are also four more persons P2, P3, P4, and P5 from another
organization, Org2, who are customers and purchase tokens and hence have various tokens transferred to
them. The steps involved in these transactions are as follows:

● Step1: Person P1 from the organization calls the MintBatch function in order to create 100

token1s, 200 token2s, 300 token3s, 150 token4s, 100 token5s, 100 token6s.

● Step2: Person P1 calls TransferFrom in order to send person P2 six token3s.

● Step3: Person P1 calls BatchTransferFrom in order to send person P2 six token3s, three token4s and

one token2s.

● Step4: Person P1 calls BatchTransferFromMultiReceipent in order to send:

○ six token5s to person P3,

○ six token3s to person P4,

○ three token4s to person P2,

○ two token2s to person P5, and

○ three token6s to person P2.

 Steps 2,3, and 4 are depicted in Figure 17 together with the functions called and their parameters. The video
animates the three different kinds of token transfers in steps 2,3, and 4.

Context

Function called TransferFrom BatchTransferFrom BatchTransferFromMultiReceipent

example function parameters

from “P1” “P1” “P1”

to “P2” “P2” [“P3”,”P4”,”P2”,”P5”,”P2”]

id 3 [3,4,2] [5,3,4,2,6]

values 6 [6,3,1] [6,6,3,2,3]

Figure 17 – Different types of transfers and their parameters. Note that P1-P5 are client account ids in base64-
encoded format

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 38 of 39

4 Conclusions
One of the most natural ways to extend our initial work on token standards implementations (reported in
D4.10) was the development of an extended and more mature standard that includes also NFTs. This was
strengthened during the workshop Blockchain Applications in Digital Finance (beyond cryptocurrencies) held
in March 2021 in which such a requirement arose.

Tokenization is a disruptive technology as it allows ownership of any asset (e.g., services, bonds, national
digital currencies, company shares, product ownerships, tickets, data, cloud machine hours, and licenses) to
be represented digitally. Digitally represented assets, also known as virtual assets, can be easily globally
marketed to end users, businesses, or agencies with very low transaction costs. Furthermore, these virtual
assets can be programmed to be subject to business rules and regulations about their usage. In D4.10 we
detailed some of the most prominent use cases for token utilization in FinTech. In finance these include:
Cryptocurrency/cross boarder payments; fundraising; letter of credit; credit risk scoring; debt issuance;
digital Coin; fiat-backed token; physical asset-backed token; and securities tokens. Examples of potential use
cases of tokens in the insurance sector include claim processing; multinational insurance; reinsurance/risk
assessment; fraud detection; crowdfunded insurance; and cryptocurrency backed loans.

Whereas tokenization has been practiced in public blockchains for unregulated initial coin offerings during
the last six years, its applications at the regulated institutional and enterprise level is just starting. There is
an increasing interest from businesses to tokenize their assets since this will enable them to reach out to
external markets easily and automate the assets trading. In particular, since (permissioned) Hyperledger
Fabric is the choice of blockchain at the enterprise level, standardized ERC-20 and ERC-1155 contributed by
INFINITECH project can accelerate tokenization adoption at the enterprise level. To this end, the INFINITECH
marketplace can make use of ERC-20 and ERC-1155 token implementations as a way to represent its assets
as virtual assets and market them to the outside world. Tokenization of INFINITECH assets in the marketplace
could also act as a demonstrated model for other businesses. Finally, since blockchains store transactions,
ERC-20 and ERC-1155 token transfer transaction data can also be retrieved through standard interfaces and
analysed using big data analysis techniques for providing business intelligence, and hence, also contributing
to BDVA efforts.

The purpose of the deliverable at hand titled D4.11 “Blockchain Tokenization and Smart Contracts – II” was
to report the outcomes of the work performed within the context of T4.4 “Tokenization and Smart Contracts
Finance and Insurance Services” in WP4 from M15 to M22 of the project with regard to extending the scope
of tokens-implementation on top of Fabric to include the ERC 1155 standard for both fungible and non-
fungible tokens. Although the deliverable is of type “R” (only Report), we provide a full demonstrator of the
token workflows along with a recording of the work using an illustrative example. D4.11 is also part of
Milestone 12 (MS12) “Second Version of Interoperability and Data Exchange Enablers” at M22.

The main artifacts from the ERC 1155 standard implementation are:

• The implementation of the six standard functions and the additional nine functions which provide a full
set of functionalities and ensure avoidance of key collisions while preserving high rate of throughput.

• Code available at the GitLab repository of the project at: https://gitlab.infinitech-
h2020.eu/blockchain/erc1155-tokenization. The code will be released to open source by the end of the
project.

• A demonstrator (movie) showing all flows available at the INFINITECH
marketplace: https://marketplace.infinitech-h2020.eu/infinitech/erc1155-token-smart-contract-for-
hyperledger

Another future direction recognized during the writing of D4.10 was the collaboration with FBK towards a
framework for federated machine learning with privacy-preserving and execution guarantees. This is the
second parallel thread taken as an outcome of D4.10 which has been developed from M15 to M22 of the
project as a collaborative effort between FBK and IBM and is reported separately in D4.14 “Encrypted Data
Querying and Personal Data Market – II”.

https://gitlab.infinitech-h2020.eu/blockchain/erc1155-tokenization
https://gitlab.infinitech-h2020.eu/blockchain/erc1155-tokenization
https://urldefense.proofpoint.com/v2/url?u=https-3A__marketplace.infinitech-2Dh2020.eu_infinitech_erc1155-2Dtoken-2Dsmart-2Dcontract-2Dfor-2Dhyperledger&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=yzvrCHxl-mvvMiisIp6rq5poDzRmOrS6sgWYIh5Xvdw&m=wxU7W8R73iD75TvIwoLe_-WyHnh7eRjgxXlKUDNaH7I&s=57nApbbhruim4nb7VLEX3Q_njHpKiRk2inWJbYvhlUg&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__marketplace.infinitech-2Dh2020.eu_infinitech_erc1155-2Dtoken-2Dsmart-2Dcontract-2Dfor-2Dhyperledger&d=DwMFaQ&c=jf_iaSHvJObTbx-siA1ZOg&r=yzvrCHxl-mvvMiisIp6rq5poDzRmOrS6sgWYIh5Xvdw&m=wxU7W8R73iD75TvIwoLe_-WyHnh7eRjgxXlKUDNaH7I&s=57nApbbhruim4nb7VLEX3Q_njHpKiRk2inWJbYvhlUg&e=

D4.11 – Blockchain Tokenization and Smart Contracts – II

H2020 – Project No. 856632 © INFINITECH Consortium Page 39 of 39

5 Appendix A: Literature
[1] “Hyperledger Fabric – Hyperledger,” 2020. [Online]. Available:

https://www.hyperledger.org/use/fabric. [Accessed 10-July-2021].

[2] F. Vogelsteller and V. Buterin, “ERC-20 token standard,” 2015. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-20 [Accessed 10-July-2021].

[3] W. Radomski, A. Cooke, P. Castonguay, J. Therien, E. Binet, and R. Sandford, “ERC-1155 multi token
standard,” 2015. [Online]. Available: https://eips.ethereum.org/EIPS/eip-1155 [Accessed 10-July-2021].

[4] N. Gaur, L. Desrosiers, V. Ramakrishna, P. Novotny, SA. Baset, and A. O'Dowd, Hands-On Blockchain with
Hyperledger, 2018.

[5] W. Entriken, D. Shirley, E. Evans, and N. Sachs, “EIP-721: ERC-721 non-fungible token standard,” 2018.
[Online]. Available: https://eips.ethereum.org/EIPS/eip-721. [Accessed 10-July-2021].

