
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D4.12 – Blockchain Tokenization

and Smart Contracts - III

Revision Number 3.0

Task Reference T4.4

Lead Beneficiary IBM

Responsible Fabiana Fournier

Partners FBK, BOUN, ENG, GFT, HPE, and IBM

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2022-03-31

Delivered Date 2022-03-21

Internal Reviewers GLA and UPRC

Quality Assurance INNOV

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Beatrice Plazzotta

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no 856632

Ref. Ares(2022)2077907 - 22/03/2022

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 38

Contributing Partners
Partner Acronym Role1 Author(s)2

IBM Lead Beneficiary Fabiana Fournier, Inna Skarbovsky

FBK Contributor Bruno Lepri and Gabriele Snatin

GLA Internal Reviewer Richard McCreadie

UPRC Internal Reviewer Dimosthenis Kyriazis

INNOV Quality Assurance John Soldatos

Revision History
Version Date Partner(s) Description

0.1 2022-01-15 IBM, FBK First draft of ToC

0.1 2022-01-20 IBM Revised ToC

0.2 2022-02-10 IBM Initial contributions of Sections 2, 3, and 4

0.3 2022-02-18 IBM Revision of Sections 2, 3, and 4

0.4 2022-02-20 IBM Contributions to Sections 1

0.5 2022-02-22 IBM Contributions to Sections 5 and 6

0.6 2022-02-28 IBM Finalisation of Sections 1, 2, 3, 4, 5, and 6

0.7 2022-03-01 IBM, FBK Executive summary

1.0 2022-03-06 IBM First Version for Internal Review

2.0 2022-03-15 GLA, UPRC, GFT Version for Peer review and Quality Assurance

3.0 2022-03-31 GFT Version for Submission

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 38

Executive Summary
In today’s financial landscape, we are witnessing a growing need by financial companies for sharing insights
and information on clients in a privacy-preserving and value-preserving way. However, this is a complex task
as financial companies have only partial information on their customers, data are siloed within organizations,
and privacy is not adequately protected.

Recent advances and the rise of new paradigms in computing science enable addressing these challenges by:

▪ Assuring that raw data never leave data repositories and are processed locally (no centralized storage

of data)

▪ Moving the algorithms to the data and trade insights and not raw data

▪ Applying vetted algorithms (algorithms are checked, e.g., for data provenance, privacy violations,

and biases)

▪ Leveraging decentralized architectures, such as blockchain

Federated Learning is an emerging approach that aims at establishing cooperation between a group of agents
for the solution of a machine learning task, with the aim of improving each agent’s performance without
disclosing any data. Blockchain technology provides all network members with an immutable ledger of the
assets managed in the blockchain assuring full provenance, single source of truth, and non-repudiation.
Therefore, it is the natural platform to support privacy, trust, as well as a secure and verifiable environment
for the execution of federated learning algorithms, and a platform for digital trading of the algorithm
outcomes. Our Blockchain-based Federated Learning environment and Data Marketplace framework enables
securely accessing, managing, and sharing/trading insights across financial and insurance institutions based
on three pillars:

▪ A Random Forest-based federated and cooperative learning algorithm

▪ A secure execution framework, built on top of the Hyperledger Fabric blockchain, that provides a

verifiable privacy-preserving computation environment for federated learning scenarios

▪ A Data Marketplace based on the Hyperledger Fabric blockchain that supports the managing and

trading of the learning algorithm outcomes with digital tokens

This report provides in-depth technical details of the implementation of a Minimum Viable Product (MVP)
that realises the Blockchain based federated learning environment and data marketplace introduced in D4.14
- Encrypted Data Querying and Personal Data Market – II. This is a collaboration between partners FBK and
IBM that leverages the work carried out in the scope of the INFINITECH project in federated learning in the
context of a fraud detection scenario, blockchain as an enabler for the secure execution environment of the
learning algorithm process, and tokenization as a means for trading the algorithm results in a data
marketplace. This report covers the blockchain aspects of the MVP, while D4.15 - Encrypted Data Querying
and Personal Data Market – III, submitted at the same time, complements the technical details from the
machine learning side.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 38

Table of Contents
1 Introduction ... 7

1.1 Objective of the Deliverable .. 8

1.2 Insights from other Tasks and Deliverables... 8

1.3 Structure .. 9

2 MVP architecture ... 10

2.1 Blockchain-based architecture for federated learning.. 10

2.2 Scenario and execution flows .. 11

2.3 Component architecture and technological stack... 13

2.4 API service design .. 14

2.5 Chaincodes design ... 17

3 MVP detailed design and implementation .. 19

3.1 Image flow and artifacts .. 19

3.1.1 Artifacts and execution flow .. 19

3.1.2 Implementation ... 20

3.2 Learning process and execution records flows and artifacts .. 21

3.2.1 Artifacts and execution flow .. 21

3.2.2 Implementation ... 23

3.3 Data marketplace and tokenization flows and artifacts .. 26

3.3.1 Artifacts and execution flow .. 26

3.3.2 Implementation ... 28

4 Artifact provenance ... 33

5 Summary and possible extensions .. 35

6 Conclusions .. 36

List of Figures
Figure 1 - BC-based secure execution environment and data marketplace architecture 11
Figure 2 - MVP end to end execution scenario (fraud detection ML algorithm) .. 12
Figure 3 - MVP components .. 14
Figure 4 - API service design .. 15
Figure 5 - RESTful APIs exposed by API service ... 16
Figure 6 - Chaincodes structure ... 18
Figure 7 - Image flow ... 19
Figure 8 - Image record endpoints .. 20
Figure 9 - Learning process and execution records flows ... 21
Figure 10 - Learning process record endpoints ... 23
Figure 11 - Execution record endpoints .. 24
Figure 12 - Data marketplace execution flow ... 26
Figure 13 - Request access to a tradeable asset sequence diagram ... 27
Figure 14 - Tradeable asset endpoints .. 28
Figure 15 - Access request endpoints .. 30

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 38

List of Tables
Table 1 – Image record data model ... 20
Table 2 - Learning process record data model .. 23
Table 3 - Execution record chaincode data model .. 25
Table 4 - Tradeable asset data model ... 29
Table 5 - Access request record data model ... 31
Table 6 – Conclusions (TASK Objectives with Deliverable achievements) .. 36
Table 7 – (map TASK KPI with Deliverable achievements) .. 37

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 38

Abbreviations/Acronyms
Abbreviation Definition

API Application Programming Interface

BC Blockchain

CA Certificate Authority

CRUD Create, Read, Update, Delete

D Deliverable

DoA Description of Action

ERC Ethereum Request for Comments

IEEE Institute (of) Electrical (and) Electronic Engineers

JSON JavaScript Object Notation

KPI Key Performance Indicator

M Month

ML Machine Learning

MSP Membership Service Provider

MVP Minimal Viable Product

RESTful Representational State Transfer

SDK Software Development Kit

T Task

WP Work Package

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 38

1 Introduction
Towards the end of the first year of the project two of the partners working together on T4.4 and T4.5, FBK
and IBM, became aware of the possibility of combining two promising technologies: Machine Learning (ML)
and Blockchain (BC) towards what became a Blockchain-based federated learning environment and data
marketplace framework. This collaboration gave birth to innovative research in the interlock between
Federated ML (promoted by FBK) and BC (promoted by IBM) and leveraged the knowledge and previous work
on digital tokens. The goal and scope of the deliverable in hand is taking the envisioned novel framework
reported previously in D4.14 – Encrypted Data Querying and Personal Data Market – II to the next level – its
realisation into a Minimal Viable Product (MVP) in the domain of fraud detection.

D4.14 gives the motivation that drove this joint work and presents the design of a generic framework in which
BC and ML complement each other in the following manner:

▪ Federated Learning is an emerging approach that aims at establishing cooperation between a group
of agents for the solution of a machine learning task, with the aim of improving each agent’s
performance without disclosing any data. This requires an organization to trust another organization
with the local execution of the machine learning algorithm on the data residing in the premises of
the latter. Since the computation is defined by one party (the algorithm’s owner) and the data is
owned by another party that also runs the computation, there might exist an inherent trust problem
– how to ensure the correct computation is performed, and that the reported results are the
corresponding outcome of that computation. The underlying assumption is that organizations
participating in the federated learning process earn from the cooperation and sharing of insights and
results while not revealing their own organizational data.

▪ A blockchain (BC) is essentially a digital ledger of transactions that is duplicated and distributed
across the participants in the blockchain network. Transactions are recorded in a final and immutable
manner by the blockchain, providing all network members with an identical and trustworthy real-
time view of the state. Due to its inherent characteristics, blockchain is the natural platform to
support privacy and trust as well as a secure execution environment. Our proposed BC solution
ensures a secure, auditable, and verifiable framework for the execution of federated learning
algorithms. The idea is that each learning node in the BC network publishes intermediate results
(a.k.a. insights or estimators in the case of fraud detection) at the end of each iteration. These results
can be consumed by other learning nodes to improve the accuracy of their next computations. The
outcomes of the learning algorithm can be then stored in the BC, managed, and exchanged using
digital tokens in a data marketplace. Note that these intermediate results comprised of estimators
and scores are relatively of small size and therefore can be efficiently stored on BC.

While the design of the framework is fully documented in D4.14, in order to meet the structure and
commitments of the Description of Action (DoA) the MVP realisation is presented in two separate but
interconnected and complementary deliverables:

▪ D4.12 - Blockchain Tokenization and Smart Contracts – III led by IBM, documents the technical details
of the MVP from the BC perspective

▪ D4.15 - Encrypted Data Querying and Personal Data Market – III led by FBK, documents the technical
details of the MVP from the ML perspective

This work is a joint collaboration between FBK and IBM within the INFINITECH project. FBK has developed a
fraud detection federated learning algorithm, run by a consortium of organizations in their own nodes and
on their own data while sharing the intermediate learning results with each other to achieve higher precision.
IBM provides a blockchain-based secure execution framework for the distributed fraud algorithm execution,
recording all the meta-information regarding the execution, and recording the shared intermediate results
on a transparent, immutable, and verifiable ledger. At the end of the execution, a completed model can be
shared as a tradeable asset on a blockchain-based data marketplace also developed by IBM. The blockchain-

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 38

based data marketplace provides a tradeable assets catalogue, where consumer organizations can search for
available assets and gain access by paying for those assets using tokens.

We have applied Hyperledger Fabric (simply Fabric) as the underlying blockchain technology for our proposed
framework. Fabric is the BC technology chosen and applied in the INFINITECH project and the one leveraged
towards tokenization mechanisms. We assume the reader is familiar with the concepts provided in the
corresponding previous deliverables and specifically technical blockchain related concepts, with emphasis on
Fabric. Therefore, description of concepts such as peers, organizations, orderers, certificate authority (CA),
channels, and chaincodes (i.e., smart contracts in the Hyperledger Fabric jargon) are out of the scope of this
document. For more details on Hyperledger Fabric, the reader can refer to [1] and [2].

Deliverable D.12 (D4.12) – Blockchain Tokenization and Smart Contracts – III constitutes the third and final
iteration of the work performed under Task 4.4 (T4.4) - Tokenization and Smart Contracts Finance and
Insurance Services.

1.1 Objective of the Deliverable
In our Blockchain-based federated learning environment and data marketplace framework, blockchain
technology plays a dual role:

▪ Ensuring the secure, auditable, and verifiable environment for the execution of federated learning
algorithms. BC ensures that the “correct” computation is performed and that the reported results
are the corresponding outcome of that computation.

▪ Enabling the trading of the learning algorithm outcomes by leveraging the usage of digital tokens in
a data marketplace.

Our realisation of the proposed framework in a fraud detection use case MVP demonstrates the fulfilment
of the above requirements.

The overarching goal of this deliverable is to document the technical aspects, both design and
implementation, of the BC aspects of the MVP. It’s worth noting that this document relates only to the BC
side of the framework, and we don’t address the correctness and validity of the federated learning algorithm
(including the algorithm to run) nor to the precision of the model created as outcome of the execution of the
algorithm. Those concerns are addressed in D4.14.

1.2 Insights from other Tasks and Deliverables
Deliverable D4.12 is released in the scope of Work Package 4 (WP4) - Interoperable Data Exchange and
Semantic Interoperability activities and documents the outcomes of the work performed within the context
of T4.4 - Tokenization and Smart Contracts Finance and Insurance Services. Specifically, we focus on the
implementation details of the blockchain aspects of the framework for the federated learning environment
and data marketplace introduced in the scope of D4.14 - Encrypted Data Querying and Personal Data Market
– II, therefore heavily relying on this deliverable.

The MVP developed and described in this document leverages previous work on tokenization performed in
T4.4 and therefore is closely related to the two previous deliverables on tokens:

▪ D4.10 – Blockchain Tokenization and Smart Contracts – II – ERC20

▪ D4.11 – Blockchain Tokenization and Smart Contracts – II – ERC1155

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 38

1.3 Structure
This document is structured as follows:

• Section 1: introduces the document, describing the context of the outcomes of the work performed
within the task and highlighting its relation to other tasks and deliverables of the project.

• Section 2: provides the overall architecture design of the MVP.
• Section 3: details the implementation of the MVP.
• Section 4: details the provenance aspects of our solution.
• Section 5: summarizes the main contributions of the work and addresses potential extensions; and
• Section 6: concludes the document.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 38

2 MVP architecture
Section 2 presents the overall detailed architecture of the MVP implementing the blockchain based federated
learning environment and data marketplace introduced in D4.14. We depict the building blocks and the
technological stack of our solution; the execution flows characterized by the different phases and managed
assets of the federated learning execution and trading process; the API service; and the chaincodes.

2.1 Blockchain-based architecture for federated learning
In our previous deliverable D4.14, we have addressed the different building blocks and the flows comprising
the secure execution framework for federated learning and data marketplace. Specifically, we have outlined
the various logical components used in the framework: (i) the container registry, where the images of the ML
algorithms are stored, (ii) the python tasks that support the creation of computational tasks from the ML
algorithm image on the learning nodes, and (iii) the blockchain network along with the appropriate
chaincodes that manage the specific artifacts (addressed in next sections): image record, learning process
record, execution task record, and model record. We have also defined the concept of data marketplace and
suggested how to implement it, allowing access to the artifacts stored in the model chaincode by trading
them for tokens applying ERC20 or ERC1155 token chaincodes. Important to note that the tokens chaincodes
have been designed and developed in the scope of D.10 (ERC20) and D.11 (ERC1155) and therefore not
specified in this report. Our proposed framework leverages these token chaincodes as part of the process of
purchasing assets from the data marketplace as described in the subsequent section.

However, when working on the MVP design for the model chaincode and its interaction with the tokens
chaincode, we have decided to extend the initial design. Instead of the model chaincode we introduce the
data marketplace chaincode. The Data marketplace chaincode is responsible for two main functionalities:

▪ Storage of tradeable assets including models and other organizational data assets for trading with
external organizations. This functionality was the original role designed for the model chaincode.

▪ Managing access for tradeable assets. The data marketplace chaincode is responsible for checking
whether the requesting user (i.e., an external organization) has granted access to a particular asset.
If so, it creates an access request in granted state after checking that: (a) there are enough tokens in
the user’s account to pay for the asset and (b) that the required amount of tokens is transferred to
the owners’ account. The chaincode is also responsible for marking access requests as rejected in
case such transfer cannot be completed, or per owner’s request. In addition, this chaincode also
provides provenance history of access requests for a particular asset or assets for a particular
organization.

The updated solution architecture for the BC-based secure federated learning environment and data
marketplace is shown in Figure 1 (refer to D4.14 for further information on the architecture).

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 38

Figure 1 - BC-based secure execution environment and data marketplace architecture

2.2 Scenario and execution flows
The proposed BC-based framework supports the three phases of the federated learning execution and
trading process:

▪ Creation of the learning algorithm and its publication in blockchain
▪ Execution of the chosen learning algorithm by a consortium of collaborating organizations with the

goal of running a common learning process on their own private data without sharing the data but
sharing only the computation results.

▪ Assets’ trading in the data marketplace that stores the catalogue of data assets, creates access
requests, and grants permissions in return for digital tokens.

Note that these three phases verification of image, execution of image, and publishing of results are initiated
and executed by the same entity, therefore preventing fraudulent activities such as executing incorrect image
by one of the participating organizations.

The execution scenario for the MVP is depicted in Figure 2 and described henceforth. It is also animated and
shown step by step in the demo movie in the project’s YouTube channel and accessible in the project
marketplace at:

▪ https://www.youtube.com/watch?v=J7ekCHSoWrg&list=PL9suUK-Ys8V3Dkzm7qmZnIb-
VIc1eSMwp&index=22.

In the figure below, we can see the three main building blocks of our solution: the blockchain network, the
docker image repository, and the Application Programming Interface (API) service, which is presented in
detail in section 2.4. We also show the nodes of the three different organizations that participate in the
federated learning process supported by the blockchain.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 38

Figure 2 - MVP end to end execution scenario (fraud detection ML algorithm)

The overall flow demonstrates the federated learning and model trading scenario from beginning to end: the
starting point is the federated learning algorithm development; converting it to docker image; publishing this
image to image repository and the image metadata to BC ledger; instantiating of the learning process
execution based on this image and storing and reading each learning iterations’ results from each node in a
secure and verifiable manner; publishing the outcome of the federated learning (the model) to the data
marketplace; and finally the trading of the model with an external organization in exchange for tokens. The
colour coded arrows in Figure 2 denotes each of these steps and are described below.

Green arrows relate to image flow:

▪ Docker container image creation from fraud detection python algorithm (step 1).
▪ Pushing of the image to docker images repository (step 2).
▪ Publishing of the image metadata to BC (step 3).
▪ Reading the image metadata from BC (step 4).
▪ Pulling the image from the image repository (step 5). Note that step 5 is based on the output from

step 4. We compare the hash stored on the BC with the hash of the image in the image registry to
validate they are the same.

Purple arrows indicate the learning process flow while the blue ones indicate execution tasks records flows:

▪ As described in the last step of the image flow, the image hash of the image pulled from the docker
image repository is validated against the corresponding image hash stored in the image metadata
record to make sure the image is valid. Next, the learning process configuration information is read
from the configuration file (step 6) and the learning process record is created on BC (step 7)
containing metadata, such as the participating organizations and their nodes, and the algorithm
image being executed.

▪ For each of the nodes participating in the federated learning, the learning process orchestration
script creates an execution record containing relevant metadata of the instance of the computational
task which is going to be instantiated on the node, such as, task id, image id, name of the node, and
iteration number (step 8). Then, this computational task is instantiated and run on a node (step 9)
reading the results of previous node’s iterations from BC, reading the source data (local or any kind
of other data source, e.g., cloud object), performing the computation, and publishing the result of

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 38

the current iteration to BC (step 10). This process is repeated per node and iteration until all nodes
report completion of computation on their end. Once this happens, the whole learning process is
completed, its status is updated in the corresponding learning process record on the blockchain, and
the completed outcome of the federated learning (i.e., the final model), is published to the data
marketplace with accompanying metadata (step 11).

Red arrows indicate the data marketplace and tokenization flows

▪ At the end of the learning process execution, a completed model is published on the BC, along with
provenance metadata of the model, such as the organizations which are the owners of the model
(organizations that participated in the learning process), the algorithm image this model was an
outcome of, and the requested price in tokens for model purchase (see step 11 before).

▪ The Data marketplace catalogue provides functionality to search for data assets based on their
metadata, such as: algorithm image the assets (in this case model) were based on, the owning
organizations, and all data assets which are the outcomes of a particular learning process (step 12).

▪ The information returned in such queries returns the asset’s metadata but not the “content” of the
asset – which is the actual data asset to be traded (this could be a model as in our example, a file, or
a binary).

▪ If an external organization wishes to acquire access to a specific data asset, it will create an access
request. This access request is stored on BC (step 13).

▪ The data marketplace chaincode validates that (step 14):
o The requesting organization is not part of the asset owners’ organizations (otherwise no

access request is required).
o The requesting organization has enough tokens on its account to satisfy the requested price

for the asset (this is done by invoking the tokens chaincode).

In case both these conditions hold, the tokens chaincode is invoked to transfer the requested number
of tokens from the buying organization’s account to the owner’s organization account and an access
request in the state granted is created for the requested asset (model).

▪ When an asset is being read (step 15), the chaincode ensures that the accessing organization is either
an owner or has a granted access request for this asset. In case this validation fails, the chaincode
will respond with an error otherwise, it will return the full record of the data asset, both the metadata
and the “content”, that is, the asset or model itself in our case.

Note that there is another unnumbered arrow called “invoke transactions/queries” connecting the API
service with the BC. As will be described in Section 2.4, all the interactions with BC are performed via the
RESTful APIs of the API service that acts as the Fabric client submitting all transactions to BC. Transactions
are an integral part of any invocation with BC. However, these interactions are not an “active” part of any
flow but rather they act “passively” as background actions. Therefore, are shown in the diagram without any
specific number.

2.3 Component architecture and technological stack
Figure 3 describes the MVP component architecture comprised of the following modules:

▪ Local docker image repository
▪ The python script representing the fraud learning algorithm, and dockerfile necessary for building

the algorithm docker image
▪ The python scripts initialize the learning process based on the algorithm image
▪ API service enveloping BC client and exposing Representational State Transfer (RESTful) APIS (in the

demo invoked by POSTMAN, cli and python APIs), provides an interface for interacting with the
blockchain network

o Javascript Express framework
o Fabric Client Javascript Software Development Kit (SDK) v1.4

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 38

▪ Dockerized blockchain network Fabric 1.4 version
o Solo ordering service docker
o 2 Organization peer network, each organization represented by 2 peer nodes and 1 CA node.
o Javascript Fabric chaincodes based on Fabric SDK v1.4 and deployed on the Fabric network

▪ Secure execution environment chaincodes comprised from image chaincode,
learning process record chaincode and execution record chaincode

▪ Data marketplace chaincode comprised from tradeable_asset and access_request
chaincodes

▪ Tokens chaincode

Figure 3 - MVP components

All the secure execution environments and data marketplace chaincodes are separate logical entities but
packaged into one Fabric contract artifact which is deployed on the blockchain channel. The tokens chaincode
is packaged into another such artifact, which is also deployed to the same blockchain channel. Such
deployment allows inter-chaincode invocations and querying, and updating of the world state of one
chaincode by another chaincode (for example, updating account balance when transferring tokens invoked
by data marketplace when granting access to an asset to an external organization).

2.4 API service design
The API service is a NodeJS Express application, exposing RESTful interfaces for invocation of various
chaincode transactions. The API service is a wrapper around Fabric NodeJS SDK client providing connection
to the Fabric network. The API service architecture is shown in Figure 4.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 38

Figure 4 - API service design

The RESTful APIs exposed by the API service are shown in Figure 5.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 38

Figure 5 - RESTful APIs exposed by API service

The /users route manages the authorization and authentication of the APIs users. In order to invoke the
chaincodes, a client needs to be registered and enrolled to the blockchain network using a proper Certificate
Authority (CA) of this organization. When a user is registered and enrolled, the CA issues an X509 certificate,
public and private keys which are stored in an applicational wallet and in the blockchain Membership Service
Provider (MSP). When a user logs in to the API service, existence of such a user certificate in the application

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 38

wallet is verified. If such a certificate exists, the application issues an AUTH token for the user which the user
continues to use throughout the session.

The /users/login API path takes care of such logging-in process for an already registered and enrolled Fabric
user.

The /users/register path is used by an authorized user to enrol and register other users as a Fabric user, who
can later-on login and perform operations using the API service. Note that only an authorized user (i.e., a
user that belongs to a BC organization and has a special permission to register other users) is allowed to
perform enrolment and registration.

The other routes will be explained in detail in Section 3 when dealing with the relevant artifacts.

2.5 Chaincodes design
As aforementioned, we devised the following chaincodes comprising the framework: image chaincode,
learning process orchestration chaincode (consisting of learning process and execution record chaincodes),
and data marketplace chaincode (comprised from tradeable asset and access request chaincodes) and tokens
chaincode.

The structure for all the chaincodes except tokens chaincode is depicted in Figure 6. As pointed out before,
tokens chaincode has been devised at the beginning of the project and has been addressed extensively in
D4.10 and D.11. We apply it in our framework for the trading of the outcomes of the federated as described
in Section 2.2.

The chaincodes structure is based on the concept of AssetStore (implemented on BC ledger) which stores
managed assets of a certain assetType. The basic functions of AssetStore are Create, Read, Update, and
Delete (CRUD) for the managed asset, which is represented by a unique key, which is a combination of
assetType + unique asset ID. This structure also allows querying the AssetStore for a particular asset based
on query parameters and on partial key. The managed asset also has fields indicating its provenance such as
creation and update timestamps of the asset record in the BC ledger.

Each chaincode is represented by a particular managed asset type: execution record (ExecutionRecord asset),
learning process (LearningProcess asset), learning algorithm image (DockerImage asset), tradeable asset
(TradeableAsset asset), and access request (AccessRequest asset). Each has its unique structure (information
kept on the ledger), and also a set of unique queries per this managed asset type (see Figure 6).

The FederatedLearningContext is an extension of Fabric’s shim Context3 class and represents the unique
context for interacting with the ledger (executions of CRUD operations on the ledger). It is extended to hold
reference to the BC based asset store described earlier. The FederatedLearningContract, which is an
extension of Fabric’s shim Contract4 class is the high-level entry point to the execution of all the described
chaincodes and offers APIs to invoke all chaincode operations.

3 https://hyperledger.github.io/fabric-chaincode-java/release-1.4/api/org/hyperledger/fabric/contract/Context.html

4 https://hyperledger.github.io/fabric-chaincode-node/release-1.4/api/fabric-contract-api.Contract.html

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 38

Figure 6 - Chaincodes structure

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 38

3 MVP detailed design and implementation
Section 2 portrays an overall view of the MVP architecture including the execution flows, chaincodes, and
API service. In Section 3 we drill down into the specific artifacts created and managed through the different
execution flows. We detail the design and implementation of RESTful APIs of the API service relevant for
creating, reading, updating and deleting a managed artifact in the blockchain, the data models of these
artifacts, and the different developed chaincode functions that operate on these artifacts.

3.1 Image flow and artifacts

3.1.1 Artifacts and execution flow

The fine-grained execution flow of the preparation of the algorithm image representing the fraud detection
algorithm and publishing this image in the docker image repository and in the BC is described in Figure 7.

Figure 7 - Image flow

The following artifacts have been created/used in the MVP and have been orchestrated into the image flow:

▪ Python code of the fraud learning algorithm
▪ Dockerfile for the creation of the docker image of the python fraud learning algorithm

implementation
▪ Build image script which runs docker build command to build the docker image from dockerfile
▪ Image repository for storing the built image for the fraud detection algorithm
▪ Chaincode implementing the image metadata publishing to/reading from/querying from BC
▪ API service routes and controllers related to image chaincode operations

The federated_learning.py is the fraud federated learning algorithm provided by FBK (more information on
the specific algorithm can be found in D4.15). We used this particular algorithm in the MVP, but from point
of view of the framework it is a black box implementing a python main() function, the framework can use
any other algorithm as long as it has a runnable main method. The Dockerfile describes the necessary steps

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 38

for building a container image out of the algorithm, such as the base image, installing python prerequisite
libraries and the entry point of python code to run. The image is built with the docker build command, after
which the image is pushed to the docker image repository. Finally, the image metadata is being stored in the
blockchain ledger by using the API service RESTful invocation of the appropriate chaincode function for image
record creation.

3.1.2 Implementation

3.1.2.1 Image record implementation
Figure 8 shows the RESTful APIs of the API service relevant for creating, reading, updating and deleting an
image record on the blockchain.

Figure 8 - Image record endpoints

The following RESTful APIs for image record are provided by the API service:

▪ POST <URL>/images/ - creates an image record by providing a JavaScript Object Notation (JSON) body
element with the following information: ID representing the imageTag, and dockerImageID which is
the hash of the docker image.

{

 “ID”: “<imageTag>”,

 “dockerImageID”: “<dockerImageId>”

}

▪ GET <URL>/images/:id – reads the image record defined by the provided id parameter value from
the BC.

▪ DELETE <URL>/images/:id – deletes the image record defined by the provided id parameter value
from the BC. Only the current image record from the world state would be deleted, the provenance
of this record is stored in BC transaction log and can be read and examined.

Table 1 presents the image record data model in the image chaincode.

Table 1 – Image record data model

Image

Represent a learning algorithm image

Field Type Description

ID String Image tag

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 38

dockerImageId String
Image Identifier – a digest, which contains
an SHA256 hash of the image’s JSON
configuration object

createdDateTime Date Image creation timestamp

createdOnLedgerDateTime Date Timestamp of create transaction invocation

We have three chaincode functions: CreateIDockermage, DeleteDockerImage, and GetDockerImage.
Note that no update image function is provided as a new version of the algorithm would represent a new
image (with different algorithm metadata).

▪ CreateDockerImage (dockerImageJSON JSON): Performs the necessary actions in order to
create a new image metadata entry on the ledger by updating the world state with a new record and
appending new blocks at the end of the ledger. The function receives the data containing the image
information.

▪ GetDockerImage (imageId string): Reads the required image metadata entry from world
state and returns the information in JSON format to the invoking client.

▪ DeleteDockerImage (imageId string): Deletes the specified image

3.2 Learning process and execution records flows and artifacts

3.2.1 Artifacts and execution flow

Figure 9 demonstrates the instantiation and execution of the federated learning process.

Figure 9 - Learning process and execution records flows

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 38

After the algorithm image is pushed to the image repository and its metadata is stored in the BC (see Section
2.2), the administrator or any other authorized user can initiate the federated learning process based on this
algorithm. This user runs the script initializing the learning process. The following steps take place:

1. The Learning process execution script is run.
2. The information on the execution environment, such as the number of computation nodes, the owner

organizations of computation nodes and information pertaining to the training configuration is read from
the configuration file.

3. The BC is queried to fetch the required image metadata record.
4. Based on the image metadata (particularly the image tag), the relevant image artifacts is loaded from the

docker repository, and its authenticity is verified when the image is pulled from the docker image
repository comparing the image hash to the fingerprint from the blockchain record

5. Learning process record is created in blockchain. The Learning process record contains information
relevant to the execution instance of the algorithm image – a unique ID of the learning process, the image
this process executes, the executing organizations participating in the learning processes, the current
status of the process (new/running/completed).

6. For each learning node and each learning iteration (in case the learning process is iterative), the following
is performed:
6.1. A key pair for the execution is generated – a signing key (private) and a verification key (public).
6.2. A new execution record is created in blockchain with the following fields:

o Execution identifier
o Image identifier
o Public Verification key

7. The docker containers instantiated from the algorithm docker image are deployed on the computation
environment (in the MVP we instantiate a docker container per computation node, but those could also
be instantiated on the cloud, for example as Kubernetes pods). The private signing key is incorporated in
the container(s) and is used to sign the execution results.

8. The containers read their own organizational data from premises (in the MVP we used a local file system
but in cloud environment, any organizational data source, such as cloud object store can be used), read
previous iteration’s results (estimators of other nodes) from BC, execute the current iteration’s
computation and publish the current computation results to BC, signed with the private signing key which
was incorporated into the container at its instantiation. The chaincode writing the execution results on
chain does so only after validating that the execution result reported by a specific container is signed by
the correct private key corresponding to the public key saved in the execution record representing this
container.

9. Steps 6,7,8 are repeated until all the iterations of the learning process are completed. The learning
process status is updated to reflect this. The final outcome of the learning process, a completed model,
is published on the chain as a tradeable asset. The owner organizations written in the model record in
BC are the organizations which participated in the learning processes and, therefore, contributed to the
model creation.

The following artifacts have been created/used in the MVP:

▪ The configuration file describing the organizations, nodes participating in the learning process, and
paths to data sources

▪ run_demo.sh - Admin script for the instantiation of the learning process which is a wrapper around
demo.py python program. It pulls the specified image from the image repository, accessing the BC
through the API service RESTful APIs to store learning process metadata. In addition, it instantiates
the docker containers for each node and orchestrates the execution of the containers until the
federated learning completes.

▪ Image repository from which the specified built image of the fraud detection algorithm is pulled in
order to instantiate the docker containers.

▪ Chaincode implementing the learning process and execution records metadata
publishing/reading/querying BC

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 38

▪ API service routes and controllers related to the learning process and execution record chaincode
operations.

3.2.2 Implementation

3.2.2.1 Learning-process record implementation
The relevant RESTful APIs of the API service for creating, reading, updating, and deleting a learning process
record in the blockchain is shown in Figure 10.

Figure 10 - Learning process record endpoints

The following RESTful APIs for the learning process record are provided by the API service:

▪ POST <URL>/learning-prcs/ - creates a learning process record by providing a JSON body element
with the following information: ID representing the learning process unique ID, imageTag
representing the unique ID (tag) of the image this learning process is going to execute, consortiumDef
listing the consortium of organizations participating in the learning process.

{

 "ID": "<learning-process-ID",

 "imageTag": "<imageID>",

 "consortiumDef":["<Org1>","<Org2>","<Org3>"]

}

▪ GET <URL>/learning-prcs/:id – reads the learning process record defined by the provided id
parameter value from the BC.

▪ PUT <URL>/learning-prcs/:id – updates the existing learning process record with the new record
provided by JSON body

▪ DELETE <URL>/ learning-prcs /:id – deletes the learning process record defined by the provided id
parameter value from the BC.

▪ GET <URL>/learning-prcs/getAllProcessesForImageTag/:imageTag – queries all learning process
records and return the ones where the imageTag property is equal to the value provided in the
parameter.

Table 2 presents the learning process record data model in the learning process chaincode.

Table 2 - Learning process record data model

Learning process

Represent a learning process record.

Field Type Description

ID String Identifier of the learning process instance.

imageTag String
The identifier of the algorithm learning image
used by this learning process.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 38

consortiumDef Array of String
A list of nodes’ identifiers (orgs) participating in
the federated learning.

status Enum
An enumeration value identifying the current
status of the learning process (COMPLETED,
IN_PROGRESS, FAILURE).

iteration Number For iterative processes – current iteration

We have five chaincode functions: CreateLearningTask, UpdateLearningTask, GetLearningTask,
DeleteLearningTask, and GetLearningProcessesForImageTag

▪ CreateLearningTask (processData JSON): Performs the necessary actions in order to create
a new learning process’ metadata entry on the ledger by updating the world state with a new record
and appending new blocks at the end of the ledger. The function receives the data containing the
learning process information.

▪ UpdateLearningTask (updatedProcessesData JSON): Updates existing process record in
the ledger with new information. For example, it updates the iteration of the learning execution or
the state of the process.

▪ GetLearningTask (learningTaskID string): It retrieves information about the learning

process designated by the ID
▪ DeleteLearningTask (learningTaskID string): Deletes the specified learning process

record designated by the ID.
▪ GetLearningProcessesForImageTag (imageId string): Retrieves all learning processes

for a particular algorithm image.

3.2.2.2 Execution record implementation
The relevant RESTful APIs of the API service for creating, reading, updating, and deleting an execution record
in the blockchain are shown in Figure 11.

Figure 11 - Execution record endpoints

The following RESTful APIs for execution record are provided by the API service:

▪ POST <URL>/exec-records/ - creates an execution record by providing a JSON body element with the
following information: ID representing the execution record unique ID, imageTag representing the
unique ID (tag) of the image the execution task represented by this execution record is going to
execute, and containerPubKey which is the public key of the generated key pair. As described before,
the private key is passed to the executing container and is used to sign results produced by the
computation in this container. When writing the results to BC, the chaincode verifies the signer with
this public key. The ID is generated to represent an execution belonging to a particular learning
process and algorithm image in the following format task-<learningProcessID>-

<iterationNumber>-<learningNode>-<timestamp>

{

 "ID": "<executionRecordID>",

 "imageTag": "<imageID>",

 "containerPubKey": "<public key of the generated key pair>"

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 38

}

▪ GET <URL>/exec-records/:id – reads the execution record defined by the provided id parameter value
from the BC.

▪ PUT <URL>/exec-records /:id – updates the existing execution process record with the new record
provided by JSON body (for example to update the results of the execution by the container
representing this execution record, or to update the status of the execution)

▪ DELETE <URL>/exec-records/:id – deletes the execution record defined by the provided id parameter
value from the BC.

▪ GET <URL>/queryWithParams/:learningProcessID – queries all execution records and return the ones
which belong to the specified learning process.

▪ GET <URL>/queryWithParams/:learningProcessID./:iteration– queries all execution records and
return the ones which belong to the specified learning process and its particular iteration.

Table 3 presents the execution record data model in the execution record chaincode.

Table 3 - Execution record chaincode data model

Execution Record

Represent an execution record

Field Type Description

ID String

Identifier of the learning process instance.
Generated in the format task-

<learningProcessID>-

<iterationNumber>-<learningNode>-

<timestamp>

containerPubKey String Public key of the generated key pair

status Enum

An enumeration value identifying the current
status of the learning process (NEW,
ITERATION_COMPLETED, COMPLETED, FAILURE).
NEW is the status assigned to the record just
created. ITERATION_COMPLETED is the status
assign if the execution record represents one of
the process iterations when it completes.
COMPLETED is the status given to the last
iteration execution record in the learning process
when done.

result Object
The result of the computation of the execution
task.

result_signature String
The signed result of the execution (signed by the
private key of the executing container).

We have six chaincode functions: CreateExecutionRecord, GetExecutionRecord,

SetExecutionResult, DeleteExecutionRecord,

GetAllExecutionRecordsForLearningProcess(), and

GetAllExecutionRecordsForLearningProcessAndIteration.

▪ CreateExecutionRecord (executionRecordData JSON): Performs the necessary actions in

order to create a new execution record entry on the ledger by updating the world state with a new

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 38

record and appending new blocks at the end of the ledger. The function receives the data containing

the execution record information.
▪ SetExecutionResult (updatedProcessesData JSON): Updates existing execution records

in the ledger with new information. For example, the updated JSON will contain the result of the
computation as well as the signed result for verification that the signed result is indeed reported by
the designated execution container (an execution container that was instantiated with the private
key whose matching public key is saved in the execution record).

▪ GetExecutionRecord (executionRecordId string): Retrieves information about of the
execution record designated by the ID

▪ DeleteExecutionRecord (executionRecordId string): Deletes the execution record
designated by the ID

▪ GetAllExecutionRecordsForLearningProcess (learningTaskID string): Retrieves
information about all the execution records belonging to the specified learning process ID

▪ GetAllExecutionRecordsForLearningProcessAndIteration(learningTaskID

string, iteration number): Retrieves all the execution records belonging to the specified

learning task ID and its particular iteration.

3.3 Data marketplace and tokenization flows and artifacts
As explained above, the Data marketplace chaincode is comprised of two chaincodes: the tradeable asset
chaincode and the access request chaincode. Each chaincode is represented by a particular managed asset
type. In our case, these are the tradeable asset (for tradeable asset chaincode) and the access request (for
access request chaincode).

3.3.1 Artifacts and execution flow

Figure 12 shows the Data marketplace execution flow.

Figure 12 - Data marketplace execution flow

Once the learning process is completed, the final outcome, that is, a model suitable for consumption by
external organizations is published as a tradeable asset. In the case of a fraud detection use case, the model
can serve for an external organization to detect fraudulent activities. An external organization interested in
purchasing an asset, can search the tradeable assets catalogue based on different parameters (for example,
all models generated as a result of execution of a particular fraud algorithm). In order to gain access to a
particular asset once found, the external organization needs to submit an access request to the asset and for
this access request to be approved. This access request is not required in case the organization is one of the
asset’s owners, meaning, it was part of the asset generation. In our case, participated in the fraud detection
algorithm learning process. The sequence of operations for handling access request by the inter-operation
of chaincodes are shown in Figure 13.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 38

Figure 13 - Request access to a tradeable asset sequence diagram

As aforementioned, if the requesting organization is one of the asset’s owner organizations, access will be
granted immediately without creating an access request. Otherwise, if an approved access request already
exists for the requesting organization for the specified asset, the organization will be allowed to read the
asset. Otherwise, an access request will be generated for this organization and this asset, initially in state
NEW. Account balance (in tokens) of this organization’s account will be verified, and if the account has
enough tokens to satisfy the price of the asset (which is designated in the tradeable asset record) that amount
will be transferred to the owner(s) organization’s account, the access request status will be updated to
GRANTED, and the requesting organization will be allowed to access the asset. Note that in the scope of the
MVP, we transferred the tokens to the first owner in the list of owners. However, more sophisticated
payment options can be taken into consideration (refer to different payment models as one potential
extension in Section 5).

The following artifacts related to this flow have been created/used in the MVP:

▪ Chaincodes implementing the tradeable asset and access request records publishing
to/reading/querying the BC

▪ Tokens’ chaincode implemented in D4.10. We note that specifically in the MVP we have applied the
ERC20 implementation described in D4.10, but other ERC implementations such as ERC1155 detailed
in D4.11 can be applied as well, since they comply with standard APIs tokens.

▪ API service routes and controllers related to tradeable asset and access request chaincode
operations.

The interaction between the tradeable asset and access request chaincodes and the tokens chaincode is
depicted in Figure 13. The functions invoked from the tokens chaincode are balanceOf() and transfer()
functions (refer to D4.10). The invocation of one chaincode from another chaincode, as long as they are

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 38

running on the same blockchain channel, is straightforward and is described in Hyperledger Fabric
documentation5.

3.3.2 Implementation

3.3.2.1 Tradeable asset record implementation
The relevant RESTful APIs of the API service for creating, reading, updating, and deleting a tradeable asset in
the blockchain are shown in Figure 14.

Figure 14 - Tradeable asset endpoints

The following RESTful APIs for learning process records are provided by the API service:
▪ POST <URL>/tradeable-asset / - creates a tradeable asset record by providing a JSON body element

with the following information: ID and name representing the asset, the object itself (can be any
JSON element type), provenance information of the asset, such as owning organizations, imageTag
representing the unique ID (tag) of the image, which was executed to generate the asset, learning
process the execution of which generated the asset, and the asset price.

{

 "ID": "<tradeableAsetId>",

 "name" : "<assetName>",

 "object": {"value":"<assetObject>"},

 "ownerOrgs":["<org1>","<org2>"],

 "imageTag": "<imageTag>",

 "learningProcessId":"<learningProcessID>",

 "priceInTokens": <price>

}

▪ GET <URL>/tradeable-asset/:id – reads the tradeable asset record defined by the provided id
parameter value from the BC. This method returns a value only if the invoking user belongs either to
the asset owner’s organization or to an organization which has a valid approved asset request for the
requested asset. Otherwise, the method will return an error stating lack of access authorization.

▪ PUT <URL>/tradeable-asset/:id – updates the existing learning process record with the new record
provided by the JSON body. Allowed only to an owning organization.

▪ DELETE <URL>/ tradeable-asset /:id – deletes the tradeable asset record given by the specified asset
id. The operation allowed only to an owning organization.

5 https://hyperledger-fabric.readthedocs.io/en/latest/developapps/chaincodenamespace.html#considerations

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 38

▪ GET <URL>/tradeable-asset/getAllAssetsForImage/:imageTag – queries all tradeable asset records
and returns the ones where the imageTag property is equal to the value provided in the parameter.
Only the asset metadata will be returned in the query, not the “object” property representing the
asset itself.

▪ GET <URL>/tradeable-asset/getAllAssetsForLearningProcess/:learningProcess – queries all tradeable
asset records and returns the ones where the learningProcessID property is equal to the value
provided in the parameter. Only the asset metadata will be returned in the query, not the “object”
property representing the asset itself.

Table 4 presents the tradeable asset record data model in the tradeable asset chaincode.

Table 4 - Tradeable asset data model

TradeableAsset

Represent a tradeable asset record.

Field Type Description

ID String Identifier of the tradeable asset instance.

name String The name of the asset

imageTag String
The identifier of the docker image which was executed
to create this asset.

object Any

The object representing the asset. In case of large
assets, they can be stored offchain (i.e., in a cloud
object store) and this field can hold a URL and
credentials for accessing the asset in the offchain
repository, and a hash which can be used to verify the
validity of the asset.

ownerOrgs Array of Strings The owning organizations.

learningProcess String
The identifier of the learning process which generated
this asset.

price Number
The price in tokens amount to pay for access to this
asset.

We have implemented six chaincode functions: CreateTradeableAsset, (UpdateTradeableAsset,

GetTradeableAsset, (DeleteTradeableAsset, GetAllAssetsForImageTag, and

GetAllAssetsForLearningProcess.

▪ CreateTradeableAsset (tradeableAsset JSON): Performs the necessary actions in order

to create a new tradeable asset metadata entry in the ledger by updating the world state with a new
record and appending new blocks at the end of the ledger. The function receives the data containing
the tradeable asset information.

▪ UpdateTradeableAsset (updatedAssetData JSON): Updates an existing tradeable asset in
the ledger with new information assuming the invoking user belongs to an owner asset organization.

▪ GetTradeableAsset (assetID string): Retrieves information about the tradeable asset

designated by the provided assetID. As explained in the REST API section, this method will only
return the full asset information if the invoker is the owner organization or has a valid access request
for this asset in GRANTED state. Otherwise, the method will return an error.

▪ DeleteTradeableAsset (assetID string): Deletes the tradeable asset in case the
requesting user belongs to the asset owner organization.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 38

▪ GetAllAssetsForImageTag (imageTag string): Queries the ledger and returns the assets

generated as a result of the algorithm image specified by the provided tag. It returns a list of relevant
asset metadata records, without the actual asset content (i.e., without the object property value)

▪ GetAllAssetsForLearningProcess (learningProcessID string): Queries the ledger
and returns the assets generated as a result of the learning process specified by the provided ID. It
returns a list of relevant asset metadata records, without the actual asset content (i.e., without the
object property value)

3.3.2.2 Access request record implementation
The relevant RESTful APIs of the API service for creating, reading, updating, and deleting an access request
record in the blockchain are shown in Figure 15.

Figure 15 - Access request endpoints

The following RESTful APIs for access request record are provided by the API service:
▪ POST <URL>/access-request / - creates an access request record by providing a JSON body element

with the following information: ID for the access request, the id and the name of the requested asset,
the requesting organization, and the request date. The status of the newly created request is always
NEW. This method, in combination with the updateAccessRequest()call setting the status of the
request to GRANTED, is usually called by an organization (an asset owner) on behalf of another
organization (the procuring organization) in order to grant access to the asset while bypassing the
regular access request and payment process (where the procuring organization invokes
requestAsset() operation to initiate credit validation, payment and granting of access process).
Only the asset owner organization is allowed to create access requests in this way, other
organizations need to invoke requestAccess() operation.

{

 "ID": "<access request id> ",

 "assetID" : "<requested asset id>",

 "assetName":"<requested asset name>",

 "requestingOrgName":"<requesting org name>",

 "requestDate":"<request data>"

}

▪ GET <URL>/access-request/:id – reads the access request record defined by the provided id
parameter value from the BC.

▪ PUT <URL>/access-request /:id – updates the existing access request status. Allowed only to the
owner organization of the asset.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 38

▪ DELETE <URL>/ access-request /:id – deletes the access request record identified by the specified
asset id. The operation is allowed only to the requesting organization or the asset owner
organization.

▪ POST <URL>/access-request/requestAccess/:assetID/ – initializes the process for creating access
request and granting access for the specified asset.

▪ GET <URL>/ access-request /getAllRequestsForAssetForOrg/:assetID/:orgName – queries all access
request records and returns the ones where the assetID and orgName properties are equal to the
values provided in the parameters.

▪ GET <URL>/ access-request /getAllApprovedRequestsForOrg/:orgName – queries all access request
records and returns the ones where the orgName property is equal to the value provided in the
parameter and the status of the request is GRANTED.

▪ GET <URL>/ access-request /getAllRequestsForOrg/:orgName – queries all access request records
and returns the ones where the orgName property is equal to the value provided in the parameter.

▪ GET <URL>/ access-request /getAllRequestsForAsset/:assetID – queries all access request records
and returns the ones where the assetID property is equal to the value provided in the parameter.

▪ GET <URL>/ access-request /getAllApprovedRequestsForAssetAndOrg/:assetID/:orgName – queries
all access request records and returns the ones where the assetID and orgName properties are
equal to the values provided in the parameters and the status of the request is GRANTED.

Table 5 presents the request record data model in the access request chaincode.

Table 5 - Access request record data model

Access Request

Represent an access request record.

Field Type Description

ID String Identifier of the tradeable asset instance.

assetID String The ID of the asset.

assetName String The name of the asset.

requestingOrgName String
The name of the organization for which the asset
request is created.

ownerOrgs Array of String The owning organizations.

requestDate Timestamp The creation date of the access request.

status Enum
The status of the access request (NEW, DECLINED,
GRANTED).

We have implemented ten chaincode functions: CreateAccessRequest,

UpdateAccessRequestStatus, GetAccessRequest, DeleteAccessRequest,

getAllRequestsForAssetAndOrg, getAllRequestsForAsset, getAllRequestsForOrg,

getAllApprovedRequestsForOrg, getAllApprovedRequestsForAssetAndOrg, and

requestAccess

▪ CreateAccessRequest (accessRequest JSON): Performs the necessary actions in order to
create a new access request entry on the ledger by updating the world state with a new record and
appending new blocks at the end of the ledger. The function receives the data containing the access
request information. Only the asset owner organization is allowed to create access requests this way
(others will get error notification upon attempt). Non-owner organizations that intent to request
access to a certain asset need to invoke the requestAccess() function.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 38

▪ UpdateAccessRequestStatus (updatedAccessRequest JSON): Updates an existing asset

request, specifically its status assuming the invoking user belongs to the organization which is the
asset owner.

▪ GetAccessRequest (accessRequestID string): Retrieves information about the access
request designated by the provided ID.

▪ DeleteAccessRequest (accessRequestID string): Deletes the access request record.
▪ getAllRequestsForAssetAndOrg(assetID string, orgName string): Queries the

ledger and returns all the access requests for a particular asset by a particular organization.
▪ getAllRequestsForAsset(assetID string): Queries the ledger and returns all the access

requests existing for a particular asset.
▪ getAllRequestsForOrg(orgName string): Queries the ledger and returns all access requests

by a particular organization.
▪ getAllApprovedRequestsForOrg(orgName string): Queries the ledger and returns all the

approved access requests by a particular organization.
▪ getAllApprovedRequestsForAssetAndOrg(assetID string, orgName string):

Queries the ledger and returns all approved access requests for a particular asset by a particular
organization.

▪ RequestAccess (assetID string): Request access to a particular asset.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 38

4 Artifact provenance
One of the core properties of a blockchain platform is the immutable chain of transaction blocks which
ensures provenance of all the artifacts stored on its ledger. Based on this, organizations working with BC as
their world state can establish verifiable and transparent history of updates by any organization in the BC
network and linkage between different artifacts stored on the ledger.

Accordingly, one of the functionalities envisioned in our secure execution framework and data marketplace
is to allow provenance of the whole chain of execution of the federated learning process on one hand, and
of trading processes taking place in the data marketplace, on the other.

For the secure execution framework, we would like to ensure:

▪ The secure execution validation and verification of artifacts used in the learning process by
establishing the validity of the algorithm image the learning process executes and verifying that the
result of each execution task is written to the ledger by the expected execution container and not an
“imposter”.

▪ The provenance of the learning process and algorithm image.
▪ The provenance of the computation execution task.

For the data marketplace we would like to provide the following functionalities:

▪ Provenance of the tradeable assets. For example, for the ML models we would like to know their
origin (e.g., which learning algorithm was applied, which learning algorithm image they are built
from, and what are the organizations which participated in the model creation).

▪ Provenance of access to tradeable assets. For example, being able to answer which organizations
requested access, which requests were approved, and which were denied.

These functionalities are useful for audit trails and data governance, quality assurance, and regulatory
compliance along many other use cases. Understanding the provenance of deployed models is important
when we would like to know, for example, which models were derived from a particular algorithm. Proven,
verifiable, and immutable audit trail of execution tasks producing such models can help establishing without
doubt that the models are derived from the desired ML algorithm, the desired version of that algorithm, and
no mistakes were made in the process.

In the previous sections we have described the functionalities and the artifacts implementing the secure
execution framework and the data marketplace. In this section, we emphasise the particular functionalities
related to provenance and auditing.
Relevant audit functionalities per artifact type:

▪ Learning image
o Provenance of the docker image stored in the docker image repository. The validity of the

image is established by comparing the image hash saved in the image metadata on BC with
the docker image hash of the image stored in the docker image repository.

▪ Learning process
o Audit of particular image usage in various learning processes:

getLearningProcessesForImageTag() query for retrieving all the learning processes
run on a particular algorithm image.

▪ Execution record
o Verification of the results of the execution task and the identity of executing entity by using

public-private key mechanism for instantiating execution tasks and signing the execution
results. Verification in chaincode that the signing entity holds the private key matching the
appropriate public key stored in execution record representing this execution entity (see
Section 3.2 for details).

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 38

o Execution record provenance: getAllExecutionRecordsForLearningProcess() and
getAllExecutionRecordsForLearningProcessAndIteration() queries allowing to
retrieve all execution tasks of a particular learning process, or all execution tasks of a given
learning process and a given iteration.

▪ Tradeable asset
o Provenance of the tradeable asset: getAllAssetsForImageTag() retrieves all assets

which were created as a result of particular algorithm execution while
getAllAssetsForLearningProcess() retrieves all assets which were created as
outcome of a particular learning process.

▪ Access request
o Provenance of access to particular assets: getAllRequestsForAsset() retrieves all

access requests for a tradeable asset; getAllRequestsForOrg() retrieves all access
requests issued by particular organization; getAllApprovedRequestsForOrg()
retrieves only GRANTED requests for a particular organization;
getAllRequestsForAssetAndOrg() retrieves all access request made by particular
organization for a particular asset; and getAllApprovedRequestsForAssetAndOrg()
retrieves all approved requests made by a particular organization for a particular asset.

These queries are by no means an exhaustive list. More queries can be developed to support different
use cases according to the required functionalities of their business needs (see possible extensions in
next section).

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 38

5 Summary and possible extensions
The deliverable in hand provides a deep dive into the technical details of the implementation of a blockchain
based federated learning environment and data marketplace MVP that instantiates the framework presented
in D4.14 in the domain of fraud detection.

This document provides a comprehensive description of the architecture of the MVP, the flows of the use
case scenario along with the implemented chaincodes, APIs, functions, and the assets (the learning models
in our case) stored in the blockchain ledger. In addition, we provide a blockchain based data market that
enables the secure trading of the learning process outcomes by leveraging tokenization mechanisms
developed by IBM during earlier phases of the project.

It is important to note that the devised framework is generic and suitable for a wide variety of federating
learning algorithms. We have realized the framework for the particular case of fraud detection, but the same
MVP can support other financial and insurance use cases as well, including:

▪ The execution of different algorithms, as long as they can be represented and packaged as a

computational task (e.g., a docker image).

▪ Different tokenization mechanisms - We have demonstrated cross-chaincode invocation and usage

of previously developed ERC-based token smart contracts inside the data marketplace. We are

currently applying ERC20 implementation for assets trading, but other token implementations, such

as ERC1155, could be deployed instead and used in the same manner.

Possible extensions to our MVP include:

▪ Learning process orchestration script
o The orchestration of the computational tasks is based on the synchronized execution of

multiple iterations of single-image based computation tasks on different nodes. This scenario
is suitable for fraud detection. Other types of orchestration including single computational
tasks, multiple unsynchronized computational tasks, and multi-step computations, could be
added according to the type of the learning algorithm.

▪ Data marketplace
o Support for more data assets with different metadata than the one applied for fraud

detection. For example, we might include assets in the form of files and not models.
o Support for secondary functionalities of a data marketplace including:

▪ Usage of different pluggable pricing and payments models.
▪ Auctions and price negotiations - Bids issuance and support for a negotiation process

to reach an agreement on the asset price.
▪ Artifacts’ usage audit and provenance

o More sophisticated queries can be added to support different aspects of the assets’
provenance.

A demo showing step-by-step the execution flows of the MVP can be accessed through the project
marketplace at: https://www.youtube.com/watch?v=J7ekCHSoWrg&list=PL9suUK-Ys8V3Dkzm7qmZnIb-
VIc1eSMwp&index=22. A short movie showing the key features of the MVP can also be accessed through the
project data marketplace at https://www.youtube.com/watch?v=H8M8PMIA8YU&list=PL9suUK-
Ys8V3Dkzm7qmZnIb-VIc1eSMwp&index=21.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 38

6 Conclusions
Financial drivers are pushing financial organizations to find innovative ways to share data and information on
clients in a privacy-preserving and value-preserving way. To this end, partners FBK and IBM joined forces.
During the course of the project, the teams of FBK and IBM realized that there is enormous potential in
leveraging blockchain technology for the sake of federated machine learning algorithms. Specifically,
applying blockchain as a secure environment for the execution of the learning process and a platform for
trading the algorithm outcomes. The outcome of this fruitful collaboration yielded a novel framework for a
blockchain based federated learning environment and data marketplace. The vision, motivation, and design
of this framework were provided in D4.14 - Encrypted Data Querying and Personal Data Market – II.

The purpose of the deliverable herewith, entitled D4.12 - Blockchain Tokenization and Smart Contracts - III
was to provide the technical deep dive into the design and development of an MVP blockchain application in
the domain of fraud detection that materializes the framework for the blockchain based federated learning
environment and data marketplace presented in D4.14.

Main achievements of our work include:

▪ Implementation of a blockchain based marketplace for assets managing and their trading using
digital tokens.

▪ Implementation of a blockchain based environment for the secure execution of federated machine
learning algorithms materialised for the case of fraud detection.

▪ A movie (presented during the 2nd Workshop on Blockchain Applications for Digital Finance held on
March 2, 2022) emphasising the highlights of the work
(https://www.youtube.com/watch?v=H8M8PMIA8YU&list=PL9suUK-Ys8V3Dkzm7qmZnIb-
VIc1eSMwp&index=21)

▪ A deep dive demo (step by step) of the MVP BC technical aspects available in the INFINITECH
project marketplace (https://www.youtube.com/watch?v=J7ekCHSoWrg&list=PL9suUK-
Ys8V3Dkzm7qmZnIb-VIc1eSMwp&index=22)

▪ Submission of a joint paper with FBK titled A Framework for Verifiable and Auditable Federated
Fraud Detection to the IEEE Transactions on Big Data journal special issue on "Trustable, verifiable,
and auditable federated learning".

The MVP described in this document is based on the federated learning algorithm for fraud detection detailed
in D.14. However, it is worth noting that the BC environment is agnostic to the algorithm which acts as a black
box, that is, any kind of runnable computation algorithm, which can be represented as a container image
suitable for execution, can be converted to a docker image and be executed in the developed solution. This
report should be read in conjunction with D4.15 - Encrypted Data Querying and Personal Data Market – III
which complements the technical details of the MVP with the machine learning parts to get a comprehensive
understanding of the complete framework implementation.

The current deliverable constitutes the final report of Task 4.4 and concludes the activities of the specific
task.

Table 6 – Conclusions (TASK Objectives with Deliverable achievements)

Objectives Comment

Enhance the permissioned
blockchain with
cryptographic tokenization
features, as a means of
enabling assets trading

Two most popular standards (ERC20 and ERC1155) have been
implemented on top of Fabric in the scope of the previous
deliverables and leveraged in the proposed framework and MVP as
enablers for assets trading in a data marketplace.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 38

Specify and implement
Smart Contracts for the
secure exchange of data

Required chaincodes have been designed and developed to enable
the secure framework proven in a fraud detection scenario minimal
viable product.

Provide the means for
trading access to data and
information through the
permissioned blockchain.

The BC network developed enables the governance of access to the
assets stored in the ledger and the trading of these assets via digital
tokens.

Table 7 – (map TASK KPI with Deliverable achievements)

KPI Comment

Realize a blockchain
based federated learning
environment

Target Value = 1

Our MVP realizes the devised framework for the secure execution of
federated machine learning algorithms exploiting BC technology in a
fraud detection use case.

Realize a blockchain
based data marketplace

Target Value = 1

Our MVP provides the mechanisms for controlling and managing the
access rights of the assets stored in the BC (fraud detection federated
algorithm outcomes) and for trading these assets via digital tokens.

D4.12 – Blockchain Tokenization and Smart Contracts - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 38 of 38

Appendix A: Literature
[1] Hyperledger Fabric – Hyperledger,” 2020. [Online]. Available: https://www.hyperledger.org/use/fabric.

[Accessed 15-March-2022].

[2] Gaur, N., Desrosiers, L., Ramakrishna, V., Novotny, P., Baset, S.A., and O'Dowd, A. (2018). Hands-on

Blockchain with Hyperledger: Building decentralized applications with Hyperledger Fabric and Composer.

Packt Publishing.

[3] D4.10 – D4.11 as background.

