
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D5.14 – Datasets for Algorithms Training &

Evaluation - II

Revision Number 3.0

Task Reference T5.1

Lead Beneficiary UBI

Responsible Konstantinos Perakis

Partners AGRO ASSEN ATOS BOUN CP CTAG ENG FBK FTS
GEN GFT INNOV ISPRINT JRC JSI PI PRIVE RB SIA
UBI UPRC WEA

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2021-12-31

Delivered Date 2021-12-22

Internal Reviewers IBM, ASSEN

Quality Assurance INNOV

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Beatrice Plazzotta

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under Grant Agreement
no 856632

Ref. Ares(2021)7920014 - 21/12/2021

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 91

Contributing Partners
Partner Acronym Role1 Author(s)2

UBI Lead Beneficiary Konstantinos Perakis, Dimitris Miltiadou

INNOV Contributor George Fatouros

PRIVE Contributor Anna Semeniuk

UPRC Contributor George Makridis

NBG Contributor Eleni Perdikouri

CXB Contributor Mario Maawad Marcos

FTS Contributor Juergen Neises, Jean Baptiste Rouquier

JSI Contributor Maja Skrjanc

BOUN Contributor Orkan Metin

PI Contributor Aschi Massimiliano

ATOS Contributor Jorge Mira Prats

ISPRINT Contributor Aristodemos Pnevmatikakis

WEA Contributor Carlos Albo Portero

AGRO Contributor Gregory Mygdakos

ABILAB Contributor Marco Rotoloni

IBM Internal Reviewer Fabiana Fournier

ASSEN Internal Reviewer Ilesh Dattani

INNOV Quality Assurance Filia Filippou

Revision History
Version Date Partner(s) Description

0.1 2021-10-29 UBI ToC Version

0.2 2021-11-10 UBI Initial contributions on Section 2 and 3

0.3 2021-11-14 UBI Contributions on Section 2 and 3

0.35 2021-11-16 UBI Updated Contributions on Section 2 and 3

0.40 2021-11-17 NNOV, PRIVE, UPRC,
NBG, CXB, FTS, JSI,
BOUN, PI, ATOS,
ISPRINT, WEA, AGRO,
ABILAB

Contributions on Section 4

0.45 2021-11-23 UBI Updated Contributions on Section 2 and 3

0.50 2021-11-30 INNOV, PRIVE, UPRC,
NBG, CXB, FTS, JSI,
BOUN, PI, ATOS,
ISPRINT, WEA, AGRO,
ABILAB

Updated contributions on Section 4

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 91

0.60 2021-12-09 NNOV, PRIVE, UPRC,
NBG, CXB, FTS, JSI,
BOUN, PI, ATOS,
ISPRINT, WEA, AGRO,
ABILAB

Updated contributions on Section 4

0.65 2021-12-13 NNOV, PRIVE, UPRC,
NBG, CXB, FTS, JSI,
BOUN, PI, ATOS,
ISPRINT, WEA, AGRO,
ABILAB

Updated contributions on Section 4

0.70 2021-12-14 UBI Finalisation of sections 2, 3, 4 and 5

1.0 2021-12-15 UBI Initial Version for Internal Review

2.0 2021-12-20 UBI Version for Quality Assurance

3.0 2021-12-22 UBI Version for Submission

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 91

Executive Summary
The document at hand, entitled “D5.14 – Datasets for Algorithms Training & Evaluation - II” constitutes the
final report of the efforts and the produced outcomes of Task T5.1 “Data Collection for Algorithms Training
& Evaluation” of WP5. The purpose of this deliverable is threefold: a) to deliver the final and fully functional
version of the INFINITECH Data Collection component, b) to present the core characteristics and the role of
synthetic datasets within INFINITECH and c) to provide the updated documentation of the list of real and
synthetic datasets which will be exploited within INFINITECH.

Hence, the scope of the deliverable at hand can be described in the following axes:

• To deliver the fully functional version of the INFINITECH Data Collection component. The specific
component has been designed and implemented within the context of INFINITECH in order to
address the difficulties and peculiarities of the data collection process. To this end, the final high-
level architecture of the component is documented by presenting the component’s three main
modules, namely the Data Retrieval, the Data Mapper and the Data Cleaner. For each module, the
deliverable presents the final detailed design specifications and the final list of use cases that are
addressed in conjunction with the respective sequence diagrams. Finally, the deliverable provides
the final documentation of the implementation details of all three modules with the help of UML
diagrams as well as a detailed presentation of the delivered solution with a walkthrough from the
user’s perspective.

• To present the results of the comprehensive analysis of the key characteristics of the synthetic
datasets as well as the definition of their role within INFINITECH. To this end, the deliverable presents
the main categories of synthetic datasets and the methods utilised for the synthetic data generation
process supplement with the toolset available for this process. Moreover, the deliverable presents
the use cases and motivation for the usage of synthetic datasets and the role within the INFINITECH
project as leveraged by the project’s pilot. The analysis concludes with the list of synthetic datasets
which are exploited by the INFINITECH pilots. It should be noted that the results remained unchanged
from the previous iteration of the deliverable and they were reported for coherency reasons.

• To provide the updated documentation of the datasets that are collected and utilised by the
INFINITECH pilots. The deliverable presents the supplementary documentation of the list of the
datasets, real and synthetic, that are leveraged, updating the existing details of the datasets as
presented in the previous iterations. For each dataset, the details of their scope and content, their
format and the pseudonymization or anonymisation requirements, is documented.

The outcomes of this deliverable will drive the implementation activities of the rest of the tasks of WP5.
The deliverable delivers the final implementation of the INFINITECH Data Collection component and
documents the required updates and enhancements as introduced from M18 till M27. The current
deliverable constitutes the final report of T5.1 and concludes the activities of this specific task.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 91

Table of Contents
1 Introduction ... 9

1.1 Objective of the Deliverable .. 9

1.2 Insights from other Tasks and Deliverables ... 10

1.3 Structure .. 10

2 INFINITECH Data Collection ... 12

2.1 Design Specifications .. 12

2.1.1 Data Retrieval .. 13

2.1.2 Data Mapper .. 14

2.1.3 Data Cleaner .. 14

2.2 Use Cases and Sequence Diagrams .. 15

2.2.1 Data Retrieval .. 15

2.2.2 Data Mapper .. 32

2.2.3 Data Cleaner .. 37

2.2.4 Data Collection Usage Examples .. 42

2.3 Implementation of the INFINITECH Data Collection .. 44

2.3.1 Data Retrieval .. 44

2.3.2 Data Mapper .. 50

2.3.3 Data Cleaner .. 53

2.4 The INFINITECH Data Collection Solution .. 59

3 INFINITECH Synthetic Datasets .. 66

3.1 The characteristics of Synthetic Datasets .. 66

3.2 The role of Synthetic Datasets in INFINITECH .. 68

4 INFINITECH Pilot Use Cases ... 71

4.1 Pilot #2 - Real-time risk assessment in Investment Banking .. 71

4.2 Pilot #4 Personalized Portfolio Management (“Why Private Banking cannot be for everyone?”) 73

4.3 Pilot #5b - Business Financial Management (BFM) tools delivering a Smart Business Advise 74

4.4 Pilot #6 - Personalized Closed-Loop Investment Portfolio Management for Retail Customers 75

4.5 Pilot #7 - Avoiding Financial Crime ... 76

4.6 Pilot #8 - Platform for Anti Money Laundering Supervision (PAMLS) ... 77

4.7 Pilot #9 - Analyzing Blockchain Transaction Graphs for Fraudulent Activities 78

4.8 Pilot #10 - Real-time cybersecurity analytics on Financial Transactions’ BigData 79

4.9 Pilot #11 - Personalized insurance products based on IoT connected vehicles............................. 80

4.10 Pilot #12 - Real World Data for Novel Health-Insurance products .. 81

4.11 Pilot #13 - Alternative/automated insurance risk selection - product recommendation for SME 82

4.12 Pilot #14 - Big Data and IoT for the Agricultural Insurance Industry ... 83

4.13 Pilot #15 – Open Inter-Banking pilot .. 86

5 Conclusions .. 87

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 91

Appendix A: Literature... 89

Appendix B: INFINITECH List of synthetic datasets ... 90

List of Figures
Figure 1: High-level architecture of the INFINITECH Data Collection .. 13
Figure 2: API to pull information – Definition of the data source profile (API) ... 16
Figure 3: API Data Retrieval (on-demand) ... 17
Figure 4: API Data Retrieval (scheduled) ... 18
Figure 5: API to push information ... 19
Figure 6: Definition of the Data Source Profile (FTP or HTTP) ... 21
Figure 7: FTP or HTTP Data Retrieval (on-demand) ... 22
Figure 8: FTP or HTTP Data Retrieval (scheduled) ... 23
Figure 9: Definition of the Data Source Profile (DB) .. 24
Figure 10: DB Data Retrieval (on-demand) ... 25
Figure 11: DB Data Retrieval (scheduled) .. 26
Figure 12: Definition of the Data Source Profile (HDFS) .. 27
Figure 13: HDFS Data Retrieval (on-demand).. 28
Figure 14: HDFS Data Retrieval (scheduled) .. 29
Figure 15: Definition of the Data Source Profile (MinIO) .. 30
Figure 16: MinIO Data Retrieval (on-demand) .. 31
Figure 17: MinIO Data Retrieval (scheduled) .. 32
Figure 18: Data Mapping (on demand without profile) .. 34
Figure 19: Data Mapping (on demand with profile) .. 35
Figure 20: Data Mapping Profile Registration via API ... 36
Figure 21: Data Mapping (via API with profile) ... 37
Figure 22: Data Cleaning (on demand without profile) ... 38
Figure 23: Data Cleaning (on demand with profile) .. 39
Figure 24: Data Cleaning Profile Registration via API .. 40
Figure 25: Data Cleaning (via API with profile) .. 41
Figure 26: Data Collection Usage Example – Manual .. 43
Figure 27: Data Collection Usage Example – Automated via APIs .. 44
Figure 28: Data Retrieval UML diagram .. 46
Figure 29: Data Mapper UML diagram .. 52
Figure 30: Data Cleaner UML diagram .. 54
Figure 31: INFINITECH Data Collection – Mapping process .. 60
Figure 32: INFINITECH Data Collection – Mapping process (domain selection) ... 60
Figure 33: INFINITECH Data Collection – Mapping process (module/ontology selection) 61
Figure 34: INFINITECH Data Collection – Mapping process (class selection) .. 61
Figure 35: INFINITECH Data Collection – Mapping process (local file selection) .. 62
Figure 36: INFINITECH Data Collection – Mapping process (MinIO URL) .. 62
Figure 37: INFINITECH Data Collection – Cleaning process (column type definition and selection) 63
Figure 38: INFINITECH Data Collection – Cleaning process (validation rules) ... 63
Figure 39: INFINITECH Data Collection – Cleaning process (cleaning rules) ... 64
Figure 40: INFINITECH Data Collection – Cleaning process (missing value handling rules) 64
Figure 41: INFINITECH Data Collection – Cleaning process (Execution Logs) .. 64
Figure 42: INFINITECH Data Collection – Cleaning process (Detailed logs) ... 65
Figure 43: INFINITECH Data Collection – Cleaning process (Summary statistics) ... 65

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 91

List of Tables
Table 1: Definition of the Data Source Profile (API) .. 15
Table 2: API Data Retrieval (on-demand) .. 17
Table 3: API Data Retrieval (scheduled) .. 18
Table 4: API to push information ... 19
Table 5: Definition of the Data Source Profile (FTP or HTTP) .. 20
Table 6: FTP or HTTP Data Retrieval (on-demand) .. 21
Table 7: FTP or HTTP Data Retrieval (scheduled) .. 22
Table 8: Definition of the Data Source Profile (DB) ... 23
Table 9: DB Data Retrieval (on-demand) ... 24
Table 10: DB Data Retrieval (scheduled) ... 25
Table 11: Definition of the Data Source Profile (HDFS): .. 26
Table 12: HDFS Data Retrieval (on-demand) ... 27
Table 13: HDFS Data Retrieval (scheduled) ... 28
Table 14: Definition of the Data Source Profile (MinIO): .. 29
Table 15: MinIO Data Retrieval (on-demand) ... 30
Table 16: MinIO Data Retrieval (scheduled) .. 31
Table 17: Data Mapping (on demand without profile) ... 32
Table 18: Data Mapping (on demand with profile) ... 34
Table 19: Data Mapping Profile Registration via API ... 35
Table 20: Data Mapping (via API with profile)... 36
Table 21: Data Cleaning (on demand without profile) .. 37
Table 22: Data Cleaning (on demand with profile) ... 39
Table 23: Data Cleaning Profile Registration via API ... 40
Table 24: Data Cleaning (via API with profile) ... 41
Table 25: Pilot #2 List of datasets .. 71
Table 26: Pilot #4 List of datasets .. 73
Table 27: Pilot #5b list of datasets .. 74
Table 28: Pilot #6 List of datasets .. 75
Table 29: Pilot #7 List of datasets .. 76
Table 30: Pilot #8 list of datasets ... 77
Table 31: Pilot #9 list of datasets ... 79
Table 32: Pilot #10 list of datasets ... 80
Table 33: Pilot #11 List of datasets .. 80
Table 34: Pilot #12 List of datasets .. 81
Table 35: Pilot #13 List of datasets .. 82
Table 36: Pilot #14 List of datasets .. 84
Table 37: Pilot #15 List of datasets .. 86
Table 38 - Conclusions (TASK Objectives with Deliverable achievements) ... 87
Table 39: Conclusions – (map TASK KPI with Deliverable achievements) ... 88

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 91

Abbreviations/Acronyms
Abbreviation Definition

AI Artificial Intelligence

AML Anti-Money Laundering

API Application Programmable Interface

BDA Big Data Application

CSV Comma Separated Values

CTF Combating Terrorist Financing

EO Earth Observation

ES Expected Shortfall

FTP File Transfer Protocol

HDFS Hadoop Distributed File System

HPC High-performance computing

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

IoT Internet of Things

JSON JavaScript Object Notation

JWT JSON Web Token

LOCF Last Observation Carried Forward

ML Machine Learning

NOCB Next Observation Carried Backward

ORC Optimized Row Columnar

PDF Portable Document Format

PNG Portable Network Graphics

PoC Proof of Concept

PSD2 Payment Service Directive 2

RA Reference Architecture

RESTful Representational State Transfer compliant

RWD Real-World Data

SME Small and Medium-Sized Enterprises

UI User Interface

UML Unified Modelling Language

VaR Value-at-Risk

XML Extensible Mark-up Language

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 91

1 Introduction
The scope of deliverable D5.14 “Datasets for Algorithms Training & Evaluation – II” is to document the efforts
undertaken within the context of T5.1 “Data Collection for Algorithms Training & Evaluation” of WP5 from
M18 till M27. In this context, the deliverable D5.14 constitutes the final iteration of the work performed
under T5.1 and is prepared in accordance with the INFINITECH Description of Action on M27 of the project.

Datasets are key enablers for all Big Data based platforms in order to exploit its capabilities and offerings.
Nevertheless, several steps are required before they can provide valuable results, insights and hidden
knowledge as data need to be properly harmonised, annotated, cleaned, and stored. These tasks are
considered as one of the most demanding and challenging areas of the entire data lifecycle which is
referenced as the data collection aspects of the lifecycle [1]. Datasets are broadly categorised into two major
categories, the real data which are produced by data sources and data providers and the synthetic data which
are generated utilising multiple techniques and methodologies either to overcome the unavailability of real
data or to overcome several data privacy restrictions and regulations imposed.

Datasets constitute one of the main ingredients of the INFINITECH platform and within the context of the
INFINITECH project, both real and synthetic datasets are utilised by the project’s pilots. In order to be
effectively collected and stored into the INFINITECH platform and the INFINITECH stakeholders to be able to
exploit its offerings and added value, it is imperative that a flexible and efficient mechanism is provided. To
this end, within the context of Task 5.1, the consortium has analysed the key requirements related to data
collection in big data enabled platforms in order to formulate the design specifications of a data collection
component which will be integrated and implemented as part of the INFINITECH reference architecture (RA)
that is tailored to the needs of the finance and insurance sectors.

The presented solution enables the design and implementation of data collection pipelines which effectively
address the needs for the data collection aspects of both the data providers of the INFINITECH project and
the stakeholders of the financial and insurance sectors. In addition to this, the consortium exploits state-of-
the-art approaches and methods in order to generate synthetic data in various scenarios of the financial and
insurance sectors towards the implementation of innovative financial and insurance services.

Depending on the scope and target goals of the finance and insurance scenarios in the INFINITECH pilots,
different approaches are followed for the data collection aspects. The core aspect of all these scenarios are
the datasets which are collected and utilised within the scope of each pilot. It should be noted that the details
of the data collection processes of the pilots are documented in deliverable D7.2.

1.1 Objective of the Deliverable
The purpose of the deliverable is to report the outcomes of the work performed within the context of Task
5.1 from M18 till M27 of the project. The deliverable reports the updates of the work performed during the
second period of the task execution and it is mainly focused on the implementation and delivery of the final
version of the INFINITECH Data Collection component, as well as of the data collection process designed and
implemented within the context of each INFINITECH pilot and the final list of required datasets.

The first objective of the deliverable is to present the fully functional version of the INFINITECH Data
Collection component. The design specifications of INFINITECH Data Collection component, as documented
in the first iteration of the deliverable, is designed and implemented aiming to address the need for a holistic
mechanism that will empower the data providers to configure and execute data collection pipelines tailored
to their needs. The component is designed following a modular architecture composed by three distinct
modules, namely the Data Retrieval, the Data Mapper and the Data Cleaner. The design specifications of each
module are defined and described in detail along with the list of functionalities offered by each module. The
design specifications are supplemented with a concrete list of use cases that each component addresses
along with the respective sequence diagrams which depict the interactions of the stakeholders and the
components. During the second iteration, these design specifications have driven the implementation
activities of the component which was the main focus of this period. To this end, the deliverable documents

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 91

the final implementation details of the INFINITECH Data Collection component by presenting the complete
list of implemented functions, as well as the code structure of each module in the form of UML diagrams.
Finally, the deliverable presents the implemented and delivered solution by providing a walkthrough of the
delivered functionalities and by describing how they can be leveraged by the INFINITECH stakeholders.

The second objective of the deliverable is to present the role of the Synthetic Datasets and their usage within
the context of INFINITECH. To this end, the results of the executed thorough analysis are presented. Within
this analysis, the scope, categories as well as advantages and limitations are presented. The analysis presents
the most common approaches followed for the generation of synthetic data along with a complete toolset
composed of libraries, tools and framework that are utilised in the process. Finally, the analysis presents the
relevance and added value of synthetic datasets for INFINITECH project presenting the use cases in the
finance and insurance sectors for which synthetic data are utilised.

The third and final objective of the deliverable is to document the updated list of datasets that are exploited
within the context of each pilot of INFINITECH. Towards this direction, the deliverable presents the list of
datasets, real and synthetic ones, that each pilot utilises for its scenarios by documenting the details of their
content, their format and the pseudo-anonymisation and anonymisation activities applied.

Deliverable D5.14 constitutes the second and final iteration of the deliverable, and as per the INFINITECH
Description of Action, Task T5.1 lasts until M27. Therefore, this version of the deliverable constitutes the final
report of the work performed within the scope of Task 5.1 and provides all the updates and enhancements
that were introduced from the first iteration.

1.2 Insights from other Tasks and Deliverables
Deliverable D5.14 is released in the scope of WP5 “Data Analytics Enablers for Financial and Insurance
Services” and documents the outcomes of the work performed within the context of T5.1 “Data Collection
for Algorithms Training & Evaluation”. The task is directly related to the outcomes of WP2 “Vision and
Specifications for Autonomous, Intelligent and Personalized Services” in which the overall requirements of
the INFINITECH platform are defined. Task 5.1 received as input the outcomes of Task 2.1, in which the
collected user stories of pilots of the project and the extracted user requirements were formulated and
reported within deliverable D2.1 and D2.2. In addition to this, the outcomes of T2.3, in which one can find
the fundamental building blocks of the INFINITECH platform and their specifications in terms of technologies,
as well as the elicited technical requirements that are linked to these building blocks, as reported in
deliverable D2.5 and D2.6, were provided as input to T5.1. Furthermore, the outcomes of T2.7, in which the
INFINITECH Reference Architecture (INFINITECH RA) was formulated, were also provided as input to T5.1 and
had driven the design and implementation aspects of the Data Collection component that constitutes a core
part of the INFINITECH platform. Finally, the work reported in this deliverable is tightly interconnected with
the work performed in the rest of the tasks of WP5, namely T5.2, T5.3, T5.4 and T5.5, as it covers the required
data collection aspects for the datasets that will be used on all the aforementioned tasks.

1.3 Structure
This document is structured as follows:

• Section Error! Reference source not found. introduces the document, describing the context of the
outcomes of the work performed within the task and highlights its relation to the rest of tasks of the
project and deliverables of the project.

• Section 2 documents the design specifications, the use case addressed along with relevant sequence
diagrams, the implementation details of the INFINITECH Data Collection component as well as a
presentation of the implemented solution from the user’s perspective.

• Section 3 presents the key characteristics, advantages and limitations of the synthetic datasets, the
details of the synthetic data generation process and how they will be leveraged in INFINITECH.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 91

• Section 4 presents the details of the datasets that are collected from the INFINITECH pilots in order
to execute their designed use cases. Finally,

• Section 5 concludes the document.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 91

2 INFINITECH Data Collection
Updates from D5.13:
The particular section documents the necessary updates related to the advancements on the
implementation of the INFINITECH Data Collection component. In detail, the following updates are
introduced in the section (while the rest of sub-sections remain unchanged from the previous version):

• The updated implementation details of the INFINITECH Data Collection where all the implemented
functions and services are documented (sub-section 2.3)

• The presentation of the delivered fully functional INFINITECH Data Collection with a walkthrough
to its functionalities from the user’s perspective (sub-section 2.4)

2.1 Design Specifications
Updates from D5.13:
The specific sub-section remained unchanged from previous version.

Data Ingestion typically involves all the processes and operations that are performed for the gathering or
retrieval of data from different data sources or data providers, the correlation and annotation of the included
data entities with several ontologies and semantics and finally the cleaning of the data with multiple data
cleaning operations before they are stored in the underlying storage solution of the system or the data
warehouse. In the big data era, where a tremendous amount of diverse information is generated by a
plethora of data sources, systems, devices, and platforms, data ingestion becomes a crucial part of any
designed solution. However, at the same time data ingestion becomes rather challenging not only because
of the volume of data that grows exponentially, but also due to the nature of data sources that generate data
in a large variety of formats and at different velocities.

Towards this end, the INFINITECH Data Collection component was designed aiming to provide an abstract
and holistic mechanism for the data providers that will address the various connectivity and communication
challenges with the variety of data sources that are exploited in the finance and insurance sector, as well as
the peculiarities/specificities of the various data providers of the specific sectors. Hence, the scope of the
Data Ingestion mechanism is threefold:

a) to enable the acquisition and retrieval of heterogeneous data from diverse data sources and data
providers,

b) to facilitate the mapping of the entities included in the data to the corresponding entities of an
underlying data model towards the data annotation and

c) to enable the data cleaning operations that will address the data quality issues of the acquired data.

The INFINITECH Data Collection component is composed of three main modules:

a) the Data Retrieval that undertakes the responsibility to retrieve or receive the new datasets from a
data source or data provider,

b) the Data Mapper that is responsible for the generation of the mapping between the entities of
retrieved or received dataset and the ones of an underlying data model entities based on the data
provider’s input and

c) the Data Cleaner that undertakes the responsibility to perform the data cleaning operations on the
retrieved or received dataset, again based on the data provider’s input.

Figure 1 depicts the high-level architecture of the INFINITECH Data Collection. As illustrated, the INFINITECH
Data Collection component is capable of retrieving or fetching new datasets from a variety of data sources
and to receive new datasets via its exposed RESTful APIs. The newly acquired dataset is fed in the process by
the Data Retrieval in order to be provided as input to the Data Mapper. The Data Mapper performs the data

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 91

mapping operations and generates the mapping between the data entities of the newly acquired dataset and
the entities of an underlying data model, that is provided by the data provider, based on the input of the data
provider. In the final step, the newly acquired dataset is provided as input to the Data Cleaner in which the
data cleaning operations are performed based on the input of the data provider in order to provide the
“cleaned data”.

Figure 1: High-level architecture of the INFINITECH Data Collection

In the following subsections, the functionalities of the three main modules are presented in detail.

2.1.1 Data Retrieval

The scope of the Data Retrieval module is to facilitate the data acquisition from any relational database, HDFS
deployments, FTP or HTTP servers, MinIO storage servers as well as from any API of the data source. The
prerequisite is that the appropriate information is provided by the data provider to the process prior to its
invocation. Additionally, the Data Retrieval module enables the reception of new datasets that are pushed
from the data provider to its exposed RESTful APIs. Hence, the Data Retrieval module supports all the
aforementioned data source types which are considered the most commonly used data source types in every
Big Data ecosystem. Nevertheless, the modular architecture of the described solution facilitates the
expansion of the list of supported data source types in an effortless and effective manner upon the needs of
the data providers.

The process is able to retrieve new information either periodically or on-demand and can be automated as a
background process using the concept of data source profiles that are configured by the data provider based
on their needs.

Hence, the main functionalities of the Data Retrieval module are as follows:

a) The retrieval of new dataset from a data source by establishing the required connection to the data
source’s API and pulling the provided information based on the provided configuration

b) The receival (pushing) of new dataset from a data source and local storage of the received data
through well-defined RESTful APIs

c) The retrieval and fetching of files from an FTP or HTTP server by establishing the required connection
and downloading the files locally

d) The data retrieval of new data from Relational Databases by establishing the appropriate connection
and executing the appropriate query based on the provided configuration

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 91

e) The retrieval and fetching of files from an HDFS deployment or MinIO storage server by establishing
the required connection and fetching the files locally

f) The creation of a data source profile that contains all the relevant information of properly connecting
and retrieving new datasets from a specific data source which enables the automation of the data
retrieval process

g) The periodic (in preconfigured time intervals) or immediate and on-demand retrieval of new datasets
based on the provided configuration in the data source profile.

2.1.2 Data Mapper

The scope of the Data Mapper module is to enable the mapping of the data entities included in a new dataset
and the data model that is provided by the data provider. In this sense, the data provider is able to create
the mappings for each entity of the new dataset to a specific data entity of the data model. To achieve this,
at first the Data Mapper module offers the means to integrate a data model during its initial configuration.
Then, during processing, the data entities of the provided dataset are extracted and displayed to the data
provider via its user friendly and easy-to-use user interface. Through this user interface the data provider is
able to select the corresponding entities of the integrated data model that will be mapped to the entities of
the dataset. The generated mappings are stored for later reuse in a JavaScript Object Notation (JSON) format.

The whole process can be performed as a background process also, if the data provider creates the
corresponding data mapping profile for a specific dataset beforehand, which will be used in an automated
way for the execution of the process, when a new dataset for the specific profile is received.

Hence, the main functionalities of the Data Mapper module, are as follows:

a) The integration of data model that is provided by the data provider during the module configuration
b) The extraction of the data entities of the input dataset which are represented to the data provider
c) The display of the entities of the integrated data model
d) The creation of the mapping between the data entities of the input dataset and the entities of the

integrated data model based on the data provider selection
e) The generation and storage of the produced mapping in JSON format
f) The creation of a data mapping profile that contains all the relevant information of generating the

mapping in the form of mapping rules between the entities of the input dataset and the entities of
the integrated data model

g) The automated or on-demand execution via API of the mapping process in the case of existence of
data mapping profile.

It should be noted at this point that the development of a data model is out of scope of T5.1 and WP5 and
that it is the responsibility of the data provider that exploits the Data Mapper module to provide it. However,
the Data Mapper provides the means to fetch, interpret, and integrate the provided data model in the
mapping process via the module’s internal configuration. In particular, the stakeholder of the Data Mapper
module is able to define the path of the provided data model and the Data Mapper module will interpret the
provided data model during the module’s start-up operation.

2.1.3 Data Cleaner

The scope of the Data Cleaner module is to provide the data cleaning operations that will ensure that the
provided input datasets, that are originating from a variety of heterogeneous data sources, are clean and
complete to the extent possible. The specific functionalities enable the detection and correction (or removal)
of inaccurate, corrupted or incomplete values in the data entities of the datasets towards the increase of the
data quality of the specific data, as well as its value during data processing. To this end, the Data Cleaning
module’s operations are performed on top of the input dataset in order to produce the “cleaned” results.

Under the hood, the data cleaning process is a four-step process that includes:

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 91

a) the validation of the values of the data entities against a set of constraints,
b) the correction of the errors identified based on a set of data correction operations,
c) the data completion of the values for the required/mandatory data entities with missing values with

a set of data completion operations and
d) the maintenance of complete history records containing the history of errors identified and the data

cleaning operations that were performed to address them.

The cleaning process is based on the set of data cleansing rules that are defined by the data provider on a
data entity level via the Data Cleaner’s user friendly and easy-to-use user interface and include the data
validation rules, as well as the data correction and data completion actions performed for these rules.

In the same manner as with the Data Mapper, the Data Cleaner has been designed in a way that enables the
execution of the process as a background process with the only prerequisite being the creation of a data
cleaning profile for a specific dataset beforehand that will be leveraged in order to automated the process
execution upon the receival of a new dataset for which the corresponding data cleaning profile can be
applied.

To this end, the main functionalities of the Data Cleaner module are as follows:

a) The extraction of the data entities of the input dataset which are represented to the data provider
b) The definition of data cleaning rules for each extracted data entity that include the validation of the

values of the specific data entity against a set of constraints, the desired data correction operation
or the missing value handling operation

c) The execution of the data cleaning operations on the input dataset based on the set of data cleaning
rules defined by the data provider towards the generation of the “cleaned” dataset

d) The creation of a data cleaning profile that contains all the data cleaning rules of the specific dataset
e) The automated or on-demand execution via API of the cleaning process in the case of existence of

data cleaning profile.

2.2 Use Cases and Sequence Diagrams
Updates from D5.13:
The specific sub-section remained unchanged from previous version.

As explained in Section 2.1, the INFINITECH Data Collection component is composed of three main modules,
namely the Data Retrieval, the Data Mapper and the Data Cleaner. In this section, the detailed
documentation of all the use cases encapsulated on each module are presented describing in detail all the
information of each use case. Furthermore, for each use case the corresponding sequence diagram that
depicts the interactions of the involved stakeholders and the involved components are also presented.

2.2.1 Data Retrieval

2.2.1.1 API to pull information

The specific functionality undertakes the responsibility of retrieving (pulling) information from a specific data
source provider either upon the triggering of the process (on-demand pull) or in a predefined time interval
(scheduled pull). To initiate the process, the mechanism of the Data Retriever requires the definition of the
configuration (profile) of the specific data source. The configuration contains all the connections details
required in order to properly access and retrieve the required information in the form of JSON file from a
data source’s APIs. The acquired information is locally stored in order to be used in the next steps of the
process.

Table 1: Definition of the Data Source Profile (API)

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 91

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of an accessible API capable of providing the requested

information upon the successful connection and request

2. The existence of the configuration details of the respective API endpoint

Post-
conditions:

1. The data source profile is available

Data Attributes 1. Data Source Name

2. Data Source Owner

3. Data Source Type = API

4. API URL path

5. Authentication Details (Username/Password, JWT, etc)

6. Pull time interval (None or number of seconds, minutes, days)

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to register the new data source profile

1. An acknowledgement is returned and the data source profile is stored in

the list of known data sources

Pass Metrics 1. The new data source profile is available in the list of known sources for the

data retrieval process

Fail Metrics 1. The new data source profile is not available in the list of known data sources

Figure 2: API to pull information – Definition of the data source profile (API)

Upon the successful creation of the data source profile in the previous step, the data retrieval via an API of
the data provider can be triggered on-demand. In this case, the Data Retrieval component will initiate a new
pull request to the data provider’s API, utilising the information included in the data source profile and the
new dataset will be retrieved and stored locally for further processing.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 91

Table 2: API Data Retrieval (on-demand)

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of the data source profile

Post-
conditions:

1. New information has been retrieved and stored locally for further

processing

Data Attributes 1. Data Source Profile ID

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to retrieve new information based on a specific data source

profile

2. The Data Retrieval initiates the request to the respective API and retrieves

the new information

3. The new information is stored locally in a JSON format

Pass Metrics 1. The new information is available locally as a JSON format file

Fail Metrics 1. The request is rejected and no information is retrieved from the API of the

data source profile

Figure 3: API Data Retrieval (on-demand)

An alternative way is to preconfigure the process via the respective information in the data source profile to
be executed in predefined time intervals (scheduled pull). In this case, the Data Retrieval component will
initiate a new pull request to the data provider’s API based on the schedule defined in the data source profile
and the new dataset will be retrieved and stored locally for further processing.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 91

Table 3: API Data Retrieval (scheduled)

Stakeholders
involved:

N/A

Pre-
conditions:

1. The existence of the data source profile

2. The Pull time interval is set in the respective data source profile

Post-
conditions:

1. New information is retrieved and stored locally for further processing based

on the configured pull time interval

Data Attributes 1. Data Source Profile ID

Normal Flow 1. The Data Retrieval initiates the request to the respective API and retrieves

the new information based on a specific data source profile and the

configured pull time interval

2. The new information is stored locally in a JSON format

Pass Metrics 1. The new information is available locally as a JSON format file

Fail Metrics 1. The request is rejected and no information is retrieved from the API of the

data source profile

Figure 4: API Data Retrieval (scheduled)

2.2.1.2 API to push information

An alternative option for the data provider to ingest new datasets is the utilisation of the RESTful API that is
provided by the Data Retrieval module. In detail, the data provider initiates a request to the Data Retrieval
APIs to push new information providing the required information and the new dataset in the form of an
attachment file or in the request body in the JSON format. The Data Retrieval module processes the request
and stores the received file locally for further processing.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 91

Table 4: API to push information

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

N/A

Post-
conditions:

1. New information is pushed to the Data Retrieval and stored locally for

further processing

Data Attributes 1. Data Type (CSV, JSON, XML)

2. Data Source Name

3. Data Source Owner

4. Authorisation Token (JWT)

5. Data Source File (included as an attachment or in the request body)

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to push new information

2. The Data Retrieval’s retrieves the new information stores it locally in the

provided file format for further processing

Pass Metrics 1. The new information is available locally in the provided file format

Fail Metrics 1. The request is rejected and no information is stored locally

Figure 5: API to push information

2.2.1.3 Fetch files from an FTP / HTTP server

The specific functionality undertakes the responsibility of retrieving (pulling) files from a specific data source
provider’s FTP or HTTP server, either upon the triggering of the process (on-demand pull) or in a predefined
time interval (scheduled pull). To initiate the process, the mechanism of the Data Retriever requires the

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 91

definition of the configuration (profile) of the FTP or HTTP server. The configuration contains all the
connection details required in order to properly access and retrieve the required file from the data source
provider’s FTP or HTTP server. The acquired information is locally stored in order to be used in the next steps
of the process.

Table 5: Definition of the Data Source Profile (FTP or HTTP)

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of an accessible FTP or HTTP server capable of providing the

requested information upon the successful connection and request

2. The existence of the configuration details of the respective FTP/HTTP server

Post-
conditions:

1. The data source profile is available

Data Attributes 1. Data Source Name

2. Data Source Owner

3. Data Source Type = FTP or HTTP

4. File path

5. Connection URL

6. Connection Port

7. Connection Username

8. Connection Password

9. Pull time interval (None or number of seconds, minutes, days)

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to register the new data source profile

2. An acknowledgement is returned and the data source profile is stored in

the list of known data sources

Pass Metrics 1. The new data source profile is available in the list of known sources for the

data retrieval process

Fail Metrics 1. The new data source profile is not available in the list of known data sources

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 91

Figure 6: Definition of the Data Source Profile (FTP or HTTP)

Upon the successful creation of the data source profile in the previous step, the data retrieval process can
be triggered via the API of Data Retrieval from the data provider on-demand. In this case, the Data Retrieval
module will initiate a new request to the respective FTP or HTTP, utilising the information included in the
data source profile and the new file will be retrieved and stored locally for further processing.

Table 6: FTP or HTTP Data Retrieval (on-demand)

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of the data source profile

Post-
conditions:

1. New information is retrieved and stored locally for further processing

Data Attributes 1. Data Source Profile ID

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to retrieve new information from the FTP or HTTP server based

on a specific data source profile

2. The Data Retrieval initiates the request to the respective server and

retrieves the new information

3. The new information is stored locally in the provided file format

Pass Metrics 1. The new information is available locally in the provided file format

Fail Metrics 1. The request is rejected and no information is retrieved from the server

defined in the data source profile

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 91

Figure 7: FTP or HTTP Data Retrieval (on-demand)

An alternative option provided is to preschedule the execution of the process via the respective information
in the data source profile in order to be executed in predefined time intervals (scheduled pull). In this case,
the Data Retrieval module will initiate a new request to the respective FTP or HTTP based on the schedule
defined in the data source profile and the new file will be retrieved and stored locally for further processing.

Table 7: FTP or HTTP Data Retrieval (scheduled)

Stakeholders
involved:

N/A

Pre-
conditions:

1. The existence of the data source profile

2. The Pull time interval is set in the respective data source profile

Post-
conditions:

1. New information is retrieved and stored locally for further processing based

on the configured pull time interval

Data Attributes 1. Data Source Profile ID

Normal Flow 1. The Data Retrieval initiates the request to the respective server and

retrieves the new information based on a specific data source profile and

the configured pull time interval

2. The new information is stored locally in the provided file format

Pass Metrics 1. The new information is available locally in the provided file format

Fail Metrics 1. The request is rejected and no information is retrieved from the server

defined in the data source profile

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 91

Figure 8: FTP or HTTP Data Retrieval (scheduled)

2.2.1.4 Relational Databases

This functionality undertakes the responsibility of retrieving new data from relational databases by
establishing the appropriate connection and executing the appropriate query based on the provided
configuration. The operation can be executed either upon the triggering of the process (on-demand) or in a
predefined time interval (scheduled). To initiate the process, the mechanism of the Data Retriever requires
the definition of the configuration (profile) of the specific relational database, containing all the connection
details required in order to properly access and retrieve the required information from the respective
database. The acquired information is locally stored in order to be used in the next steps of the process.

Table 8: Definition of the Data Source Profile (DB)

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of an accessible SQL Database capable of providing the

requested information upon the successful connection and request

2. The existence of the configuration details of the respective DB deployment

Post-
conditions:

1. The data source profile is available

Data Attributes 1. Data Source Name

2. Data Source Owner

3. Data Source Type = DB

4. DB name

5. Executed DB Query

6. Connection URL

7. Connection Port

8. Connection Username

9. Connection Password

10. Pull time interval (None or number of seconds, minutes, days)

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 91

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to register the new data source profile

2. An acknowledgement is returned and the data source profile is stored in

the list of known data sources

Pass Metrics 1. The new data source profile is available in the list of known sources for the

data retrieval process

Fail Metrics 1. The new data source profile is not available in the list of known data sources

Figure 9: Definition of the Data Source Profile (DB)

Upon the successful creation of the data source profile in the previous step, the data retrieval process can
be triggered via the API of Data Retrieval from the data provider on-demand. In this case, the Data Retrieval
module will initiate a new connection to the respective relational database utilising the information included
in the data source profile, execute the defined query and retrieve the results and store them locally for
further processing.

Table 9: DB Data Retrieval (on-demand)

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of the data source profile

Post-
conditions:

1. New information is retrieved and stored locally for further processing

Data Attributes 1. Data Source Profile ID

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to retrieve new information from the defined DB based on a

specific data source profile

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 91

2. The Data Retrieval initiates the request to the respective DB and retrieves

the new information

3. The new information is stored locally in the provided file format

Pass Metrics 1. The new information is available locally in the provided file format

Fail Metrics 2. The request is rejected and no information is retrieved from the server

defined in the data source profile

Figure 10: DB Data Retrieval (on-demand)

In the same manner as with the rest of the options, the execution of the process can be prescheduled by
setting the respective information in the data source profile, so as to be executed in predefined time intervals
(scheduled pull). In this case, the Data Retrieval module will initiate a new connection to the respective
relational database based on the schedule defined in the data source profile, execute the predefined query,
retrieve the results and store them locally for further processing.

Table 10: DB Data Retrieval (scheduled)

Stakeholders
involved:

N/A

Pre-
conditions:

1. The existence of the data source profile

2. The Pull time interval is set in the respective data source profile

Post-
conditions:

1. New information is retrieved and stored locally for further processing based

on the configured pull time interval

Data Attributes 1. Data Source Profile ID

Normal Flow 1. The Data Retrieval initiates the request to the respective DB and retrieves

the new information based on a specific data source profile and the

configured pull time interval

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 91

2. The new information is stored locally in the provided file format

Pass Metrics 1. The new information is available locally in the provided file format

Fail Metrics 1. The request is rejected and no information is retrieved from the server

defined in the data source profile

Figure 11: DB Data Retrieval (scheduled)

2.2.1.5 Retrieve files from HDFS

The specific functionality undertakes the responsibility of retrieving (pulling) files from a specific data source
provider’s HDFS deployment, either upon the triggering of the process (on-demand pull) or in a predefined
time interval (scheduled pull). To initiate the process, the mechanism of the Data Retriever requires the
definition of the configuration (profile) of the HDFS. The configuration contains all the connection details
required in order to properly access and retrieve the required file from the data source provider’s HDFS
deployment. The acquired information is locally stored in order to be used in the next steps of the process.

Table 11: Definition of the Data Source Profile (HDFS):

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of an accessible HDFS deployment capable of providing the

requested information upon the successful connection and request

2. The existence of the configuration details of the respective HDFS

deployment

Post-
conditions:

1. The data source profile is available

Data Attributes 1. Data Source Name

2. Data Source Owner

3. Data Source Type = HDFS

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 91

4. HDFS File Path

5. Connection URL

6. Connection Port

7. Authentication details

8. Pull time interval (None or number of seconds, minutes, days)

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to register the new data source profile

2. An acknowledgement is returned and the data source profile is stored in

the list of known data sources

Pass Metrics 1. The new data source profile is available in the list of known sources for the

data retrieval process

Fail Metrics 1. The new data source profile is not available in the list of known data sources

Figure 12: Definition of the Data Source Profile (HDFS)

Upon the successful creation of the data source profile in the previous step, the data retrieval process can
be triggered via the API of Data Retrieval from the data provider on-demand. In this case, the Data Retrieval
component will initiate a new request to the respective HDFS deployment, utilising the information included
in the data source profile and the new file will be retrieved and stored locally for further processing.

Table 12: HDFS Data Retrieval (on-demand)

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of the data source profile

Post-
conditions:

1. New information is retrieved and stored locally for further processing

Data Attributes 1. Data Source Profile ID

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 91

Normal Flow 4. The data source provider initiates a request to the Data Retrieval’s API

endpoint to retrieve new information from the defined HDFS deployment

based on a specific data source profile

5. The Data Retrieval initiates the request to the respective HDFS deployment

and retrieves the new information

6. The new information is stored locally in the provided file format

Pass Metrics 2. The new information is available locally in the provided file format

Fail Metrics 3. The request is rejected and no information is retrieved from the server

defined in the data source profile

Figure 13: HDFS Data Retrieval (on-demand)

On the other hand, the execution of the process can be executed in predefined time intervals (scheduled
pull). In this case, the Data Retrieval module will initiate a new connection to the HDFS deployment based
on the schedule defined in the data source profile, retrieve the new file and store it locally for further
processing.

Table 13: HDFS Data Retrieval (scheduled)

Stakeholders
involved:

N/A

Pre-
conditions:

1. The existence of the data source profile

2. The Pull time interval is set in the respective data source profile

Post-
conditions:

1. New information is retrieved and stored locally for further processing based

on the configured pull time interval

Data Attributes 1. Data Source Profile ID

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 91

Normal Flow 1. The Data Retrieval initiates the request to the respective HFDS deployment

and retrieves the new information based on a specific data source profile

and the configured pull time interval

2. The new information is stored locally in the provided file format

Pass Metrics 1. The new information is available locally in the provided file format

Fail Metrics 1. The request is rejected and no information is retrieved from the server

defined in the data source profile

Figure 14: HDFS Data Retrieval (scheduled)

2.2.1.6 Retrieve files from MinIO

The specific functionality undertakes the responsibility of retrieving (pulling) files from a specific data source
provider’s MinIO storage server. The process can be triggered at any time (on-demand pull) or automatically
in a predefined time interval (scheduled pull). As with the rest of the cases, Data Retriever requires the
definition of the configuration (profile) of the MinIO storage server that should contain all the required
information (connection details), in order to be able to establish a connection to the storage server and
retrieve the required file. The retrieved file is locally stored and is fed to the Data Mapper or Data Cleaner
for further processing.

Table 14: Definition of the Data Source Profile (MinIO):

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of an accessible MinIO storage server capable of providing

the requested information upon the successful connection and request

2. The existence of the configuration details of the respective MinIO storage

server

Post-
conditions:

1. The data source profile is available

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 91

Data Attributes 1. Data Source Name

2. Data Source Owner

3. Data Source Type = MinIO

4. Bucket Name

5. File Path

6. Endpoint

7. Access Key

8. Access Secret

9. Pull time interval (None or number of seconds, minutes, days)

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to register the new data source profile

1. An acknowledgement is returned and the data source profile is stored in

the list of known data sources

Pass Metrics 1. The new data source profile is available in the list of known sources for the

data retrieval process

Fail Metrics 1. The new data source profile is not available in the list of known data sources

Figure 15: Definition of the Data Source Profile (MinIO)

Once the data source profile has been successfully registered in accordance with the previous step, the data
retrieval process can be initiated by utilising the API of Data Retrieval and the on-demand retrieval of the
requested file is triggered. Under the hood, the Data Retrieval module will initiate and establish a connection
to the specified MinIO storage server, based on the information included in the data source profile and pull
locally the requested file.

Table 15: MinIO Data Retrieval (on-demand)

Stakeholders
involved:

Data Source Provider

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 91

Pre-
conditions:

1. The existence of the data source profile

Post-
conditions:

1. New information is retrieved and stored locally for further processing

Data Attributes 1. Data Source Profile ID

Normal Flow 1. The data source provider initiates a request to the Data Retrieval’s API

endpoint to retrieve new information from the specific MinIO storage

server based on a specific data source profile

2. The Data Retrieval initiates the request to the respective MinIO storage

server and retrieves the new information

3. The new information is stored locally in the provided file format

Pass Metrics 1. The new information is available locally in the provided file format

Fail Metrics 1. The request is rejected and no information is retrieved from the server

defined in the data source profile

Figure 16: MinIO Data Retrieval (on-demand)

While the process can be triggered and executed at any time, there is also the option to execute the process
automatically in predefined time intervals (scheduled pull) provided that the respective parameter is set in
the data source profile. In this case, the Data Retrieval module initiates a new connection to the MinIO
storage based on the Pull time interval that is set in the data source profile, retrieves the new file and stores
it locally for further processing.

Table 16: MinIO Data Retrieval (scheduled)

Stakeholders
involved:

N/A

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 91

Pre-
conditions:

1. The existence of the data source profile

2. The Pull time interval is set in the respective data source profile

Post-
conditions:

1. New information isretrieved and stored locally for further processing based

on the configured pull time interval

Data Attributes 1. Data Source Profile ID

Normal Flow 1. The Data Retrieval initiates the request to the respective MinIO storage

server and retrieves the new information based on a specific data source

profile and the configured pull time interval

2. The new information is stored locally in the provided file format

Pass Metrics 1. The new information is available locally in the provided file format

Fail Metrics 1. The request is rejected and no information is retrieved from the server

defined in the data source profile

Figure 17: MinIO Data Retrieval (scheduled)

2.2.2 Data Mapper

2.2.2.1 Data Mapping (on demand without profile)

For the Data Mapping process, the data provider is able to perform an on-demand mapping process for a
specific dataset without the use of data mapping profile. This process can be executed only through the user
interface of the Data Mapper, as the data provider will be instructed to provide their input by selecting the
proper entities of the underlying data model that will be mapped to the entities that are extracted by their
dataset. During this process, the data provider is given the option to save the provided information as a data
mapping profile that can be used to automate the process in the future executions.

Table 17: Data Mapping (on demand without profile)

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 91

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. A new dataset is available for the data mapping process

2. The existence of a data model that is integrated during the process start-up

Post-
conditions:

1. The data mapping of the data entities of the datasets with the underlying

integrated data model is available

Data Attributes N/A

Normal Flow 1. The data source provider selects the dataset that will be utilised as input in

the data mapping process.

2. The data entities of the dataset are extracted and presented to the data

source provider

3. For each data entity, the data source provider selects the corresponding

entity from the underlying integrated data model that the data entity will

be mapped

4. The data source provider is presented with the option to save the provided

information as a data mapping profile for the specific dataset

5. The data mapping between the dataset and the underlying integrated data

model l is produced and stored locally in JSON format

Pass Metrics 1. The data mapping is available in JSON format

2. In case the data mapping profile option is selected, the existence of the data

mapping profile for later reuse

Fail Metrics 1. The data mapping is not available.

2. In case the data mapping profile option is selected, the data mapping profile

is missing

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 91

Figure 18: Data Mapping (on demand without profile)

2.2.2.2 Data Mapping (on demand with profile)

For the Data Mapping process, the data provider is able to perform an on-demand mapping process for a
specific dataset, utilising an existing data mapping profile. This process can be executed through the user
interface of the Data Mapper and upon selection of the data mapping profile. The profile is then applied to
the specific dataset and the results are available for verification by the data source provider. Upon
verification, the data mapping is produced and stored for later use.

Table 18: Data Mapping (on demand with profile)

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. A new dataset is available for the data mapping process

2. The existence of the underlying integrated data model

3. The existence of the data mapping profile for the specific dataset

Post-
conditions:

1. The data mapping of the data entities of the datasets with the underlying

integrated data model is available

Data Attributes 1. Data Mapping Profile ID

Normal Flow 1. The data source provider selects the dataset that will be utilised as input in

the data mapping process.

2. The data entities of the dataset are extracted and presented to the data

source provider

3. The data source provider selects the data mapping profile for the specific

dataset in order to be applied

4. The data mapping profile is applied to the specific dataset is available for

verification by the data source provider

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 91

5. Upon verification, the data mapping between the dataset and the

underlying integrated data model is produced and stored locally in JSON

format

Pass Metrics 1. The data mapping is available in JSON format

Fail Metrics 1. The data mapping is not available.

Figure 19: Data Mapping (on demand with profile)

2.2.2.3 Data Mapping Profile Registration via API

An alternative way of utilising the Data Mapper is with the use of the provided RESTful APIs. However, this
option requires the definition of the data mapping profile of the specific dataset. The data mapping profile
contains all the required information that will enable the automation of the data mapping process.

Table 19: Data Mapping Profile Registration via API

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of the configuration details for the data mapping of the

datasets

Post-
conditions:

1. The data mapping profile is available

Data Attributes 1. Data Source Name

2. Data Source Owner

3. Data Mapping rules

Normal Flow 1. The data source provider initiates a request to the Data Mapper’s API

endpoint to register the new data mapping profile

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 91

2. An acknowledgement is returned and the data mapping profile is stored in

the list of data mapping profiles

Pass Metrics 1. The new data mapping profile is available in the list of data mapping profiles

for the data mapping process

Fail Metrics 1. The new data mapping profile is not available in the list of known data

mapping profiles

Figure 20: Data Mapping Profile Registration via API

2.2.2.4 Data Mapping (via API with profile)

The data mapping process can be triggered via the respective RESTful APIs, with the only precondition being
the existence of a data mapping profile. The data source provider can initiate a request to the Data Mapper’s
API endpoint to perform the data mapping on the selected dataset based on a specific data mapping profile.
Alternatively, the Data Retrieval could be the one to trigger the Data Mapper as part of the automated end-
to-end data collection process.

Table 20: Data Mapping (via API with profile)

Stakeholders
involved:

Data Source Provider or Data Retrieval

Pre-
conditions:

1. A new dataset is available for the data mapping process

2. The existence of the common information mode of the INFINITECH

3. The existence of the data mapping profile for the specific dataset

Post-
conditions:

1. The data mapping of the data entities of the datasets with the common

information mode of the INFINITECH is available

Data Attributes 1. Dataset Name

2. Local file path of the dataset

3. Data Mapping Profile ID

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 91

Normal Flow 1. The data source provider or Data Retrieval initiates a request to the Data

Mapper’s API endpoint to perform the data mapping on the selected

dataset based on a specific data mapping profile

2. The Data Mapper performs the data mapping operations on the selected

dataset and produces the data mapping.

3. The new data mapping information is stored locally in a JSON format

Pass Metrics 1. The data mapping is available in JSON format

Fail Metrics 1. The data mapping is not available.

Figure 21: Data Mapping (via API with profile)

2.2.3 Data Cleaner

2.2.3.1 Data Cleaning (on demand without profile)

In the same manner as for the data mapping, for the Data Cleaning process, the data provider is able to
perform an on-demand cleaning process for a specific dataset without the use of data cleaning profile. This
process can be executed only through the user interface of the Data Cleaner, since the input from the data
provider is required in order to define the cleaning rules that include the validation rules, as well as the data
cleaning and data completion actions that will be performed in case the validation identifies an error. During
this process, the data provider is given the option to save the provided information as a data cleaning profile
that can be used to automated the process in future executions.

Table 21: Data Cleaning (on demand without profile)

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. A new dataset is available for the data cleaning process

Post-
conditions:

1. The produced “cleaned” dataset is available

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 38 of 91

Data Attributes N/A

Normal Flow 1. The data source provider selects the dataset that will be utilised as input in

the data cleaning process.

2. The data entities of the dataset are extracted and presented to the data

source provider

3. For each data entity, the data source provider selects the data validation

rule, as well as the data cleaning and data completion action that will be

performed in case of a data validation error.

4. The data source provider is presented with the option to save the provided

information as a data cleaning profile for the specific dataset

5. The data cleaning operation is performed and the “cleaned” dataset is

available.

Pass Metrics 1. The “cleaned” dataset is available

2. In case the data cleaning profile option is selected, the existence of the data

cleaning profile for later reuse

Fail Metrics 1. The data cleaning is not performed.

2. In case the data cleaning profile option is selected, the data cleaning profile

is missing

Figure 22: Data Cleaning (on demand without profile)

2.2.3.2 Data Cleaning (on demand with profile)

In the case where a data cleaning profile exists, the Data Cleaning process can be executed by the data
provider on demand through the user interface of the Data Cleaner. In detail, upon the selection of the input
dataset, the entities of the dataset are extracted and the data provider can select a data cleaning profile that

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 39 of 91

can be used in the process. The Data Cleaning process is executed by applying the cleaning rules set in this
profile and the “cleaned” dataset is available for further processing.

Table 22: Data Cleaning (on demand with profile)

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. A new dataset is available for the data cleaning process

2. The existence of the data cleaning profile for the specific dataset

Post-
conditions:

1. The produced “cleaned” dataset is available

Data Attributes 1. Data Cleaning Profile ID

Normal Flow 1. The data source provider selects the dataset that will be utilised as input in

the data cleaning process.

2. The data source provider selects the data cleaning profile for the specific

dataset in order to be applied

3. The data cleaning profile is applied to the specific dataset is available for

verification by the data source provider

4. Upon verification, the data cleaning operation is performed and the

“cleaned” dataset is available.

Pass Metrics 1. The “cleaned” dataset is available

Fail Metrics 1. The data cleaning is not performed.

Figure 23: Data Cleaning (on demand with profile)

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 40 of 91

2.2.3.3 Data Cleaning Profile Registration via API

The execution of the Data Cleaning process can be performed also by utilising the RESTful APIs of the Data
Cleaner. In this case, the first step is the registration of a data cleaning profile for a specific dataset via the
respective API. The data cleaning profile contains all the required information that will enable the automation
of the data cleaning process.

Table 23: Data Cleaning Profile Registration via API

Stakeholders
involved:

Data Source Provider

Pre-
conditions:

1. The existence of the configuration details for the data cleaning of the

datasets

Post-
conditions:

1. The data cleaning profile is available

Data Attributes 1. Data Source Name

2. Data Source Owner

3. Data Cleaning rules

Normal Flow 1. The data source provider initiates a request to the Data Cleaner’s API

endpoint to register the new data cleaning profile

2. An acknowledgement is returned and the data cleaning profile is stored in

the list of data cleaning profiles

Pass Metrics 1. The new data cleaning profile is available in the list of data cleaning profiles

for the data cleaning process

Fail Metrics 1. The new data cleaning profile is not available in the list of known data

cleaning profiles

Figure 24: Data Cleaning Profile Registration via API

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 41 of 91

2.2.3.4 Data Cleaning (via API with profile)

The data cleaning process can be triggered via the respective RESTful APIs of the Data Cleaner, provided that
a data cleaning profile has been registered beforehand. In this case, the data source provider can initiate a
request to the Data Cleaner’s API endpoint to perform the data cleaning on the selected dataset based on a
specific data cleaning profile. Furthermore, in terms of automation of the end-to-end data collection process,
the Data Mapper could trigger the Data Cleaner in order to perform the next step in the process.

Table 24: Data Cleaning (via API with profile)

Stakeholders
involved:

Data Source Provider or Data Mapper

Pre-
conditions:

1. A new dataset is available for the data cleaning process

2. The existence of the data cleaning profile for the specific dataset

Post-
conditions:

1. The produced “cleaned” dataset is available

Data Attributes 1. Dataset Name

2. Local file path of the dataset

3. Data Cleaning Profile ID

Normal Flow 1. The data source provider or Data Mapper initiates a request to the Data

Cleaner API endpoint to perform the data cleaning on the selected dataset

based on a specific data cleaning profile

2. The Data Cleaner performs the data cleaning operations on the selected

dataset and produces the “cleaned” dataset.

Pass Metrics 1. The “cleaned” dataset is available

Fail Metrics 1. The data cleaning is not performed.

Figure 25: Data Cleaning (via API with profile)

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 42 of 91

2.2.4 Data Collection Usage Examples
As documented in Section 2.1, the INFINITECH Data Collection component has a modular architecture
composed of three distinct modules, namely the Data Retrieval, the Data Mapper and the Data Cleaner,
which are designed with a variety of functionalities. One of the core aspects of the design specifications of
all three modules, is their high level of modularity and that they are highly configurable in terms of both
operation and integration. As a result, they enable the design and execution of many different data collection
pipelines that are tailored to the needs of each data provider. In this sense, a data collection pipeline can be
designed by the data provider in a way that the data provider can utilise the user interfaces of the modules
(or any number of them) to execute a data collection process, where in this case manual steps, executed by
the data provider, will be included in the process. On the other hand, a data collection pipeline can be
designed by the data provider in order to operate in a fully automated manner, in which case the whole
process is executed via the use of APIs without any manual intervention.

In the following paragraphs, two main examples of the utilisation of the INFINITECH Data Collection are
presented. In the first example, the data provider utilises the user interfaces of the modules in order to
retrieve a new dataset from the API of a specific data source.

Hence, in the first step, the data provider registers the new data source profile for the respective API in the
Data Retrieval via its user interface. Upon the creation of the new data source profile, the data source
provider invokes via the user interface the retrieval of the new dataset based on this specific data source
profile. Under the hood, the Data Retrieval initiates a new request to the respective API and fetches the new
dataset in the form of a JSON file.

Once the dataset retrieval is completed, the data provider is moved to the next step that includes the data
mapping process. The data provider exploits the user interface of the Data Mapper in order to select the
newly fetched dataset. Upon the selection of the dataset, the data entities of the dataset are extracted and
presented to the data source provider. The data source provider is able to select the entity from the
underlying integrated data model that corresponds to each specific dataset entity and create the respective
data mapping.

Upon the successfully data mapping completion, the data source provider is moved to the third and final step
that includes the data cleaning process. In the same manner, the data entities of the dataset are extracted
and presented to the data source provider and the data source provider is able to set the data cleaning rules
for each entity of the dataset. Upon the completion of the data cleaning process, the produced “cleaned”
dataset is available for later usage. The described example execution is depicted in Figure 26.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 43 of 91

Figure 26: Data Collection Usage Example – Manual

On the other hand, the same process can be fully automated by exploiting the provided RESTful APIs of the
INFINITECH Data Collection.

During the first step, the data source provider registers the corresponding data source profile, data mapping
profile and data cleaning profile for the specific dataset that will be retrieved from the API of the data source.
Once all profiles are successfully registered, the data source provider initiates the retrieval of the new dataset
based on the defined data source profile via the corresponding Data Retrieval’s API. The Data Retrieval
initiates the request to the corresponding data source API and retrieves the new dataset.

Upon the successful retrieval of the new dataset, the data source provider is informed and they initiate the
data mapping process with the respective data mapping profile via the Data Mapper’s API. Upon the
successful data mapping generation, the data provider is informed and they initiate the final step of the data
cleaning process by invoking the respective API of the Data Cleaner with the corresponding data cleaning
profile.

Once the data cleaning process is complete, the data provider is informed and the “cleaned” data are ready
for use. The described example execution is depicted in Figure 27.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 44 of 91

Figure 27: Data Collection Usage Example – Automated via APIs

It should be noted that the presented end-to-end executions are only indicative use cases of the modularity
and configurability of the INFINITECH Data Collection. As highlighted in the previous sections, the INFINITECH
Data Collection can be configured in multiple ways depending on the needs of the data source provider,
addressing multiple use cases where the three modules are properly configured and combined.

2.3 Implementation of the INFINITECH Data Collection
Updates from D5.13:
The specific sub-section has been updated in order to include the latest implementation details of the
INFINITECH Data Collection component.

As described in section 2.1, the INFINITECH Data Collection component is composed by three distinct
modules namely the Data Retrieval, the Data Mapper and the Data Cleaner, which are integrated in order to
formulate the configurable solution that enables the data source providers to perform data ingestion
processes tailored to their needs. The implementation of each of the three modules is driven by the design
specifications that are also documented in section 2.1 of the current deliverable. In the following subsections,
the final and complete implementation details of each module are presented, providing a high-level overview
of how the source code is organised with the help of UML diagrams along with the implementation details
of the respective functions of each module.

2.3.1 Data Retrieval
The updated class diagram of the final fully functional release of the Data Retrieval is depicted in Figure 28.
As displayed in the UML diagram, the Data Retrieval is composed by the DataRetrievalApplication that

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 45 of 91

constitutes the main service of the module and that is responsible for handling all the interactions and the
communication of the Data Retrieval module with the other two modules of the INFINITECH Data Collection,
as well as for the orchestration of the internal services of the module.

In detail, the DataRetrievalApplication mainly interacts with the main controllers of the Data Retrieval
module, namely the HealthCheckController, the DataSourceProfileController, the DataRetrievalController,
and the HealthentiaController, which undertake the interaction with the underlying internal services. These
internal services are not exposed to the rest of the modules and the interaction with these services is
explicitly performed through their internal interfaces that are exposed only to the respective controllers.

DataRetrievalApplication: This is the entry point class of the Data Retrieval microservice and it contains the
proper functionality to initialize the application.

● main(String[] args): This is the main function of the microservice, which is responsible for initiating

the application.

HealthCheckController: This class is a REST controller responsible for exposing the proper health-check
functionality of the application.

● healthCheck(): This function is responsible for returning a status related to the health of the

application. If the service is running properly, a status of 200 will be returned, while If the service is

running with any problem a status of 500 will be returned. On the contrary, if the service is not

running at all, a response will never be returned.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 46 of 91

Figure 28: Data Retrieval UML diagram

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 47 of 91

DataSourceProfileService: This class is a Java Interface, responsible for exposing the proper methods that
have to do with the management of data source profiles that are used for the data retrieval process.

● insert(profile: DataSourceProfileDto): This function accepts as parameter a new data source profile

and stores it in the underlying database. The newly created profile is then returned to the user.

● insert(profiles: List<DataSourceProfileDto>): This function accepts as parameter a list of new data

source profiles and stores them in the underlying database. The newly created profiles are then

returned to the user.

● findAll(): This function returns a list of all the available data source profiles.

● findById(id: String): This function accepts as parameter an id of a data source profile and returns that

specific profile, if it exists.

● save(id: String, profile: DataSourceProfileDto): This function accepts as parameter an id of a data

source profile, as well as a new profile configuration, and updates the profile that corresponds to the

given id, based on the values of the newly given profile.

● delete(id: String): This function accepts as parameter an id of a data source profile and deletes that

specific profile if it exists.

● activateDataSourceProfile(id: String): This function accepts as parameter an id of a data source

profile and activates that profile, if it exists.

● deactivateDataSourceProfile(id: String): This function accepts as parameter an id of a data source

profile and deactivates that profile, if it exists.

● activateAllDataSourceProfiles(): This function is responsible for activating all available data source

profiles.

● deactivateAllDataSourceProfiles(): This function is responsible for deactivating all available data

source profiles.

● batchActivateDataSourceProfiles(ids: List<String>): This function accepts as parameter a list of ids

of data source profiles and activates those profiles.

● batchDeactivateDataSourceProfiles(ids: List<String>): This function accepts as parameter a list of

ids of data source profiles and deactivates those profiles.

● batchDeleteDataSourceProfiles(ids: List<String>): This function accepts as parameter a list of ids of

data source profiles and deletes those profiles.

● findByDataSourceType(type: DataSourceType): This function accepts as parameter a data source

profile type (e.g. MinIO, HDFS, HTTP, etc), and returns a list of profiles that are configured for the

specific type.

DataSourceProfileServiceImpl: This class implements the interface DataSourceProfileService and all its
corresponding functions. No further functionality is provided.

DataSourceProfileController: This class is a REST-based controller that exposes the data source profiles
management functionalities, by taking advantage of the functions available from the interface
DataSourceProfileService.

● add(profile: DataSourceProfileDto): This function accepts as parameter a new data source profile

and stores it in the underlying storage, by calling the insert function of the DataSourceProfileService.

● addBatch(profiles: List<DataSourceProfileDto>): This function accepts as parameter a list of new

data source profiles and stores them in the underlying storage, by calling the insert function of the

DataSourceProfileService.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 48 of 91

● getAll(): This function returns a list of all the available data source profiles, by calling the findAll

function of the DataSourceProfileService.

● getById(id: String): This function accepts an id as a path variable and returns the data source profile

that corresponds to that id, by calling the findById function of the DataSourceProfileService.

● update(id: String, profile: DataSourceProfileDto): This function accepts an id as path variable and a

new datasource profile in the request body and updates the data source profile that corresponds to

that given id with the value of the new profile, by calling the save function of the

DataSourceProfileService.

● delete (id: String): This function accepts an id as a path variable and deletes the data source profiles

that correspond to that id, by calling the delete function of the DataSourceProfileService.

● activate(id: String): This function accepts an id as a path variable and activates the data source

profiles that correspond to that id, by calling the activateDataSourceProfile function of the

DataSourceProfileService.

● deactivate(id: String): This function accepts an id as a path variable and deactivates the data source

profiles that correspond to that id, by calling the deactivateDataSourceProfile function of the

DataSourceProfileService.

● activateAll(): This function is responsible for activating all the available data source profiles, by calling

the activateAllDataSourceProfiles function of the DataSourceProfileService.

● deactivateAll(): This function is responsible for deactivating all the available data source profiles, by

calling the deactivateAllDataSourceProfiles function of the DataSourceProfileService.

● batchActivate(ids: List<String>): This function accepts a list of data source profile ids in the request

body and activates the profiles that correspond to those ids, by calling the

batchActivateDataSourceProfiles function of the DataSourceProfileService.

● batchDeactivate(ids: List<String>): This function accepts a list of data source profile ids in the

request body and deactivates the profiles that correspond to those ids, by calling the

batchDeactivateDataSourceProfiles function of the DataSourceProfileService.

● batchDelete(ids: List<String>): This function accepts a list of data source profile ids in the request

body and deletes the profiles that correspond to those ids, by calling the

batchDeleteDataSourceProfiles function of the DataSourceProfileService.

DataRetrievalService: This class is a Java Interface, responsible for exposing the proper methods that have to
do with the proper collection of data from various sources.

● retrieveData(dataSourceProfileId: String): This function accepts as parameter the id of an existing

data source profile and triggers the data retrieval process, based on the configuration available in

this profile. This function is preferred for automated data retrieval.

● retrieveData(dataSourceProfileDto: DataSourceProfileDto): This function accepts as parameter a

new data source profile and triggers the retrieval process based on that profile. This function is used

for the manual data retrieval where the data source profile is explicitly defined each time and we are

not interested in storing it.

● receiveData(dataSourceProfileId: String, data: MultipartFile): This function accepts as parameters

a data source profile id as well as a Multipart file and is responsible for storing that file in the

intermediate MinIO storage and further process it based on the data source profile that corresponds

to the given id.

● receiveData(dataSourceProfileDto: DataSourceProfileDto, data: MultipartFile): This function

accepts as parameters a new data source profile as well as a Multipart file and is responsible for

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 49 of 91

storing that file in the intermediate MinIO storage and further process it based on the given data

source profile.

DataRetrievalServiceImpl: This class implements the interface DataRetrievalService and all its corresponding
functions. No further functionality is provided.

DataRetrievalController: This class is a REST-based controller that exposes the data retrieval functionalities,
by taking advantage of the functions available from the interface DataRetrievalService.

● retrieve(dataSourceProfileId: String): This function accepts as path variable the id of an existing data

source profile and triggers the retrieval process by making use of the retrieveData function of the

DataRetrievalService.

● retrieve(dataSourceProfileDto: DataSourceProfileDto): This function accepts as a request body a

new data source profile and triggers the retrieval process by making use of the retrieveData function

of the DataRetrievalService.

● receive(dataSourceProfileId: String, data: MultipartFile): This function accepts both the id of an

existing data source profile, as well as a Multipart file in form-data format and processes the

incoming file by making use of the receiveData function of the DataRetrievalService.

● receive(dataSourceProfileDto: DataSourceProfileDto, data: MultipartFile): This function accepts

both a new data source profile, as well as a Multipart file in form-data format and processes the

incoming file by making use of the receiveData function of the DataRetrievalService.

MinIOService: This class is a Java Interface, responsible for exposing the proper methods that have to do with
data collection and other functionalities on-top of a MinIO installation.

● uploadObject(bucket: String, sourceObject: String, destinationObject:String): This function accepts

as parameters the name of a MinIO bucket, the name of a local file and the name that the file should

have in MinIO and uploads that file to the corresponding bucket with the given name.

● copyObject(sourceBucket: String, sourceObject: String, destinationBucket: String,

destinationObject: String): This function accepts as parameters the names of two MinIO buckets as

well two names of objects and copies the object from the first bucket to the second one.

● removeObject(bucket: String, object: String): This function accepts as parameters the name of a

MinIO bucket and an object and is responsible for deleting that object from the specific bucket.

● listObjects(bucket: String): This function is responsible for listing all files inside a MinIO bucket.

● downloadObject(bucket: String, object: String): This function accepts as parameters the name of a

MinIO bucket and object and downloads that object as a temporary file in the local file system.

MinIOServiceImpl: This class implements the interface MinIOService and all its corresponding functions. No
further functionality is provided.

HTTPService: This class is a Java Interface, responsible for exposing the proper methods that have to do with
data acquisition using the HTTP protocol, such as REST APIs and HTTP servers.

● executeHttpCall(params: Map<String, Object>): This function is responsible for making an HTTP call

based on the given parameters and stores that data that comes as a result from that HTTP call.

HTTPServiceImpl: This class implements the interface HTTPService and all its corresponding functions. No
further functionality is provided.

FTPService: This class is a Java Interface, responsible for exposing the proper methods that have to do with
the collection of data from FTP servers.

● readFromFtp(params: Map<String, Object>): This function is responsible for retrieving data from an

FTP server based on the parameters given as argument.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 50 of 91

FTPServiceImpl: This class implements the interface FTPService and all its corresponding functions. No further
functionality is provided.

RDBMSService: This class is a Java Interface, responsible for exposing the proper methods that have to do
with the collection of data from relational databases such as MySQL and PostgreSQL.

● readFromRdbms(params: Map<String, Object>): This function is responsible for retrieving data from

a relational database management system based on the parameters given as argument.

RDBMSServiceImpl: This class implements the interface RDBMSService and all its corresponding functions.
No further functionality is provided.

HDFSService: This class is a Java Interface, responsible for exposing the proper methods that have to do with
the collection of data from Hadoop HDFS installations.

● readFromHDFS(params: Map<String, Object>): This function is responsible for retrieving data from

a Hadoop HDFS based on the parameters given as argument.

HDFSServiceImpl: This class implements the interface HDFSService and all its corresponding functions. No
further functionality is provided.

HealthentiaService: This class is a Java Interface, responsible for exposing the proper functionality needed
specifically for pilot 12 and the files that are being collected from the Healthentia API.

● getFiles(startDate: String, endDate: String): This function accepts as parameter a start and end date

and returns a list of all the already downloaded files from the retrieval functionality that are available

in the intermediate MinIO storage.

HealthentiaServiceImpl: This class implements the interface HealthentiaService and all its corresponding
functions. No further functionality is provided.

HealthentiaController: This class is a REST-based controller that is meant to be consumed explicitly by pilot
12 and exposes the proper functionality required by that pilot, by taking advantage of the functions that are
available in the HealthentiaService interface.

● getFiles(startDate: String, endData: String): This function accepts as query parameters a start and

end date in format YYYY-MM-DD and returns a list of the available Healthentia files in MinIO, by

calling the getFiles function of the class HealthentiaService.

Scheduler: This class encapsulates the proper functionality to provide scheduled runs for the necessary data
source profiles, as well specific implementations to cover special needs.

● downloadFromHealthentia(): This function is a scheduled task developed specifically for the needs

of the pilot 12 in order to fetch data from the Healthentia API by taking into consideration several

factors such as the current date and the various data types available for retrieval.

● downloadFromScheduledDataSourceProfile(): This function is a generic scheduled task responsible

for running the necessary data source profiles based on the pre-configured interval by always using

the same configuration.

2.3.2 Data Mapper
Figure 29 depicts the class diagram of the Data Mapper and as illustrated in the UML diagram, the
DataMapperApplication is the main service of the module, acting as the interface of the module with the rest
of the modules of the INFINITECH Data Collection and providing the level of abstraction on top of the internal
services of the module that are not exposed outside the module. In this sense, the DataMapperApplication
interacts with the main services of the Data Mapper, namely the MappingModelService,
MappingConfigurationService, MinioService and the MappingService via the corresponding internal
controllers which undertake the interaction with the underlying internal services. These internal services are

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 51 of 91

not exposed to the rest of the modules and the interaction with these services is explicitly performed through
their internal interfaces that are exposed only to the respective controllers.

DataMapperApplication: This is the entry point class of the Data Mapper microservice and it contains the
proper functionality to initialize the application.

● main(String[] args): This is the main function of the microservice, which is responsible for initiating

the application.

MappingModelService: This class provides the proper functionalities which are responsible for the CRUD
operations on a Mapping model.

● getMappingModelFields(String modelName): The specific function takes as input a model name and

returns all the fields that belong to it as a list.

● getMappingModelField(FieldID id): The specific function, takes as input a FieldID object (that

contains both model and field name) and fetches the respective field.

● deleteMappingModelFields(String modelName): The specific function takes as input a mapping

mode’s name and deletes all its fields.

● updateMappingModelField(UpdateFieldDTO update): The specific takes as input an

UpdateFieldDTO and performs the requested update to the respective field of the mapping model.

● updateMappingModelFields(MappingModelDTO mappingModel): The specific function performs a

batched update on the fields of the mapping model that is given in the arguments.

● insertNewMappingModelField(String modelName, FieldDTO field): The specific function takes as

input a mapping model name and a field and adds the field in the mapping model.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 52 of 91

Figure 29: Data Mapper UML diagram

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 53 of 91

● insertNewMappingMode(MappingModelDTO mappingModel): The specific function performs the

insertion of a new mapping model to the Mapper’s database.

MappingConfigurationService: This class provides the proper functionalities which are responsible for the
CRUD operations on a Mapping Configuration.

● getMappingConfiguration(String id): The specific function fetches the mapping configuration

identified by the provided id.

● getMappingConfigurationCorrespondences(String id): The specific function fetches all field

correspondences of the mapping configuration identified by the provided id.

● deleteMappingConfigurationId(String id): The specific function deletes the mapping configuration

identified by the provided id.

● updateMappingConfiguration(String id, MappingConfigurationDTO update): The specific function

takes as input a MappingConfiguration DTO and a mapping configuration id. It updates appropriately

the mapping configuration which is identified by the given id.

● createMappingConfiguration(MappingConfigurationDTO update): The specific function performs

the insertion of a new mapping configuration to the Mapper’s database.

MinioService: This class provides the proper functionalities that are responsible for the communication with
Minio object Storage.

● downloadObject(String bucket, String object): The specific function takes as input a bucket’s name

in Minio as well as the path of the object inside this bucket, and downloads and stores the particular

object in the temporary storage.

● uploadFile(String bucket, String object, String localFilePath): This function uploads a file whose

location is specified in localFilePath variable, in the specified bucket of Minio in the given object path.

● getHeaderLine(RequestHeaderDTO requestHeaderDTO): This function takes as input the path of a

csv file which is stored in Minio and invokes minioClient program to return its header line as a list of

strings.

MappingService: This class generates the mapping between the input data elements and the mapping
instructions included in the provided mapping configuration.

● mapFile(File originalFile, String configurationID): The specific function takes as input a file and a

configurationID ,and produces a new file that has been mapped based on the correspondences of

the mapping configuration that the configurationID refers to.

2.3.3 Data Cleaner
The Data Cleaner implements the data cleaning process, that is documented in Section 2.1.3, and is
composed of four (4) steps: a) the data validation, b) the data correction, c) the missing values imputation
and d) the complete logging of the performed data cleaning operations. The class diagram of the Data Cleaner
is depicted in Figure 30.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 54 of 91

Figure 30: Data Cleaner UML diagram

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 55 of 91

As displayed in Figure 30, the DataCleaner module is composed by the main service, namely the
DataCleanerService, and a set of the internal services, each one undertaking a specific step of the data
cleaning process, namely the ConfigService, the ValidatorService, the CleanserService, the CompleterService
and the LoggerService.

The DataCleanerService orchestrates the execution of the data cleaning process by exploiting the internal
services via the internally exposed interfaces that each service offers explicitly to the main service. The
DataCleanerService executes the data cleaning process based on the set of data cleansing rules that are
defined by the data source provider. In these rules, the configuration that will customise the operations of
the internal services of the ValidatorService, the CleanserService and the CompleterService is defined. The
ConfigService and the LoggerService are supplementary services that facilitate the execution of the data
cleaning process. Hence, the DataCleanerService implements the following main functions:

● clean_data (profile: DataCleaningProfile, data: MultipartFile, workflow_id: String): The specific

function is orchestrating the execution of the data cleaning process utilising an existing or a new data

cleaning profile. The function receives as input the identifier of the data cleaning profile along with

the path of the local file or the file itself, and based on the rules defined in the profile it invokes

ValidatorService, the CleanserService and the CompleterService services.

● json_to_data_frame (json_object: String): This is an internal function that accepts a JSON formatted

string and converts it into a pandas DataFrame.

● minio_object_to_data_frame (bucket: String, object: String): This is an internal function that

accepts a bucket and object name from MinIO, reads that object and loads it into a pandas

DataFrame.

● data_frame_to_json (df: DataFrame): This internal function takes as input a pandas DataFrame and

converts it into a python dict formatted JSON.

● data_frame_to_minio (df: DataFrame, bucket: String, object: String): This is an internal function

that accepts a pandas DataFrame as well as the names of a MinIO bucket and object, and stores the

content of that DataFrame to specified MinIO bucket.

● pre_compute_column_statistics (df: DataFrame): This is very useful internal function that pre-

computes statistics for all the columns (mean, max, min, etc), so that they can be used during the

cleaning and missing value handling steps.

The DataCleanerService provides the CleanController interface that constitutes the single external exposed
interface that the INFINITECH Data Collection offers from the specific service. Through this interface, the data
cleaning process is initiated and executed. The interface has the following main functions:

• post (profile: DataCleaningProfile, data: MultipartFile): This controller-level function takes as input

a new data cleaning profile as well as a file, triggers the clean_data method of the

DataCleanserService and returns the cleaned dataset back to the user.

• post (profile: DataCleaningProfile, workflow_id: String): This controller-level function is used in the

case of the “automated” cleaning process and accepts as input the id of the data cleaning profile to

apply, as well as an id of the workflow process which contains the information of the path of the file

to clean.

The ConfigService is the internal service that undertakes the profile management operations that involve the
registration, storage and retrieval of the data cleaning profiles. To this end, the ConfigService, in accordance
with the rest of profile management services of the INFINITECH Data Collection, implements proper
functionality for CRUD operations on data cleaning profiles:

● create_profile (profile: DataCleaningProfile): This function accepts as input a data cleaning profile

object and stores it.

● get_profiles (): This function returns a list of all the currently available cleaning profiles.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 56 of 91

● get_profile (profile_id: String): This function takes as input an id of a specific cleaning profile, and

returns that profile, if exists.

● update_profile (profile_id: String, new_profile: DataCleaningProfile): This function takes as input

the id of an existing cleaning profile as well as new profile, and updates the old profile based on the

values of the new one.

● delete_profile (profile_id: String): This function takes as input the id of an existing cleaning profile

and deletes that profile.

The ConfigController class is a REST controller that exposes the profile configuration functionalities to the
outer world by using the proper functions of the ConfigService:

● post (profile: DataCleaningProfile): This controller-level function is used to store a new data cleaning

profile, by invoking the create_profile function of the ConfigService class.

● get (): This controller-level function is used to fetch all the available data cleaning profiles, by invoking

the get_profiles function of the ConfigService class.

● get (profile_id: String): This controller-level function is used to fetch a specific data cleaning profile,

by invoking the get_profile function of the ConfigService class.

● put (profile_id: String, new_profile: DataCleaningProfile): This controller-level function is used to

update a specific data cleaning profile, by invoking the update_profile function of the ConfigService

class.

● delete (profile_id: String): This controller-level function is used to delete a specific data cleaning

profile, by invoking the delete_profile function of the ConfigService class.

The ValidatorService is the internal service that is responsible for the data validation checks that are
performed on the selected dataset. In this sense, the service offers an extended list of data validation checks
which are performed against the data entities of the selected dataset based on the preferences of the data
source provider. In particular, within the data cleaning rules, the data validation rules are defined and are
translated to a set of constraints that the specific data entity should conform with. The list of data validation
rules includes the following:

• Conformance to a data type (i.e., Boolean, Integer, String, etc.)

• Conformance to a list of acceptable values (i.e., “Yes” or “No”)

• Conformance to a value range (i.e., the minimum and maximum acceptable values)

• Conformance to a value representation format (i.e., all dates are following the YYYY-MM-DD format)

• Conformance to a value uniformity (i.e., all time-stamps are in UTC format)

• Conformance to uniqueness (i.e., duplicate values are not acceptable)

• Conformance to non-empty value (i.e., all mandatory fields should have values)

• Conformance to cross-field validity (i.e., the sum of fields with percentage values must be equal to
100)

• Conformance to cross-field dependency (i.e., in case the field is set to a value then the other field
should be set to a value)

In this sense, the ValidatorService implements the class that encapsulates the functionality of checking the
input dataset against a set of rules and collect all identified errors.

● validate_data (df: DataFrame, rules: Dict): This is the main function of the class. It accepts as input

a pandas DataFrame representing the dataset to be validated, as well as a set of rules to verify and

by consulting the internal functions of the same class, it gives as output another DataFrame which

contains the violations that were detected.

● check_pre_defined_values (rules: Dict): This is an internal function that accepts as parameter the

validation rules and checks the input dataset for any violations regarding pre-defined values (closed

list of values).

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 57 of 91

● check_range (rules: Dict): This is an internal function that accepts as parameter the validation rules

and checks the input dataset for any violations regarding numeric ranges.

● check_outliers_iqr (rules: Dict): This is an internal function that accepts as parameter the validation

rules and checks the input dataset for any numeric outliers, by using the Interquartile Range (IQR)

metric.

● check_duplicate_values (rules: Dict): This is an internal function that accepts as parameter the

validation rules and checks the input dataset for any duplicate values in a given column.

● check_regex_pattern (rules: Dict): This is an internal function that accepts as parameter the

validation rules and checks the input dataset against a given regular expression.

● check_date_format (rules: Dict): This is an internal function that accepts as parameter the validation

rules and checks the input dataset for compliance against a specific date format, for columns that

represent date values.

● check_cross_field_operational (rules: Dict): This is an internal function that accepts as parameter

the validation rules and checks the input dataset for cross-field rules among different columns that

need to comply to a specific numerical expression (e.g., column A + column B > 10).

● check_cross_field_conditional (rules: Dict): This is an internal function that accepts as parameter the

validation rules and checks the input dataset for cross-field rules among different columns that need

to comply to a specific conditional expression (e.g., if column A is greater than 8, then column B

should be equal to 0).

● check_string_length (rules: Dict): This is an internal function that accepts as parameter the validation

rules and checks the input dataset for compliance against a specific date format, for columns that

represent date values.

● check_data_types (rules: Dict): This is an internal function that accepts as parameter the validation

rules and checks the input dataset for compliance to the given data types.

● check_missing_values (rules: Dict): This is an internal function that accepts as parameter the

validation rules and checks the input dataset for any missing values.

The CleanserService is the internal service that is responsible for the data correction operations that are

performed on the selected dataset. The service provides a list of corrective operations which are

performed against the conformance errors identified by the ValidatorService, based preferences of the

data source provider, as defined in the data correction rules. The CleanserService offers, among others,

the following data correction operations:

• Inconsistent value rejection and removal of a value from a record of a dataset.

• Inconsistent value rejection and removal of a complete record of a dataset.

• Inconsistent value replacement with a statistical value as the minimum or maximum value observed,
the mean or median value or the most frequent value.

• Inconsistent value replacement with a specific value

In this sense, the CleanserService implements the service that provides the necessary functionality to apply
the proper cleaning actions to the identified errors that came up during the validation stage.

● cleanse_data (df: DataFrame, rules: Dict, errors: DataFrame): This is the main function of the class.

It accepts as input a pandas DataFrame representing the dataset to be cleaned, as well as a set of

rules and the validation errors identified. Then, by using the available internal functions, it uses the

available cleaning rules to properly address the violated values.

● drop_rows (rules: Dict): This is an internal function that accepts as parameter the cleaning rules and

drops the rows that violate the given constraints.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 58 of 91

● replace_with_value (rules: Dict): This is an internal function that accepts as parameter the cleaning

rules and replaces any violated values with a predefined value.

● replace_with_mean (rules: Dict): This is an internal function that accepts as parameter the cleaning

rules and replaces any violated values with the mean value of the column.

● replace_with_most_frequent (rules: Dict): This is an internal function that accepts as parameter the

cleaning rules and replaces any violated values with the most frequent value (mode) of the column.

● replace_with_max (rules: Dict): This is an internal function that accepts as parameter the cleaning

rules and replaces any violated values with the max value of the column.

● replace_with_min (rules: Dict): This is an internal function that accepts as parameter the cleaning

rules and replaces any violated values with the min value of the column.

● replace_with_median (rules: Dict): This is an internal function that accepts as parameter the

cleaning rules and replaces any violated values with the median value of the column.

● apply_date_time_format (rules: Dict): This is an internal function that accepts as parameter the

cleaning rules and applies the proper date format to any violated values.

The CompleterService is the internal service that undertakes the missing value handling operations that are
performed against the selected dataset. The service provides a set of data imputation operations that are
performed against the errors identified by the ValidatorService, which are related to non-empty value
conformance as defined in the data completion rules by the data source provider. To this end, the
CompleterService offers the filling of the missing values based on the following data imputation operations:

• Using statistical methods such as the minimum or maximum value observed, the mean or median
value or the most frequent value

• Using the Linear Regression algorithm

• Using the k-Nearest Neighbours algorithm

• Using the Moving Average method

• Using the Last Observation Carried Forward (LOCF) and Next Observation Carried Backward (NOCB)
methods

• Direct data imputation with a predefined value

Hence, the CompleterService implements the proper functionality that is needed in order to impute missing
values that were identified during the validation stage.

● check_data_completeness (df: DataFrame, rules: Dict): This is the main function of the class. It

accepts as input a pandas DataFrame representing the dataset, as well as a set of rules and its goal

is to properly impute any missing values across the different columns, based on the given rules and

by making use of the various internal functions.

● drop_na (rules: Dict): This is an internal function that accepts as parameter the missing value

handling rules and is responsible for dropping rows where a missing value was identified.

● fill_with_value (rules: Dict): This is an internal function that accepts as parameter the missing value

handling rules and is responsible for filling missing values in a specific column, using a constant value.

● fill_with_last_observation_carried_forward (rules: Dict): This is an internal function that accepts as

parameter the missing value handling rules and is responsible for filling missing values in a specific

column, by using the Last Observation Carried Forward (LOCF) method.

● fill_with_next_observation_carried_backwards (rules: Dict): This is an internal function that accepts

as parameter the missing value handling rules and is responsible for filling missing values in a specific

column, by using the Next Observation Carried Backwards (NOCB) method.

● fill_with_mean (rules: Dict): This is an internal function that accepts as parameter the missing value

handling rules and is responsible for filling missing values in a specific column, by using that column’s

mean value.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 59 of 91

● fill_with_median (rules: Dict): This is an internal function that accepts as parameter the missing

value handling rules and is responsible for filling missing values in a specific column, by using that

column’s median value.

● fill_with_max (rules: Dict): This is an internal function that accepts as parameter the missing value

handling rules and is responsible for filling missing values in a specific column, by using that column’s

max value.

● fill_with_min (rules: Dict): This is an internal function that accepts as parameter the missing value

handling rules and is responsible for filling missing values in a specific column, by using that column’s

min value.

● fill_with_most_frequent (rules: Dict): This is an internal function that accepts as parameter the

missing value handling rules and is responsible for filling missing values in a specific column, by using

that column’s most frequent (mode) value.

The LoggerService is the complementary internal service that is utilised during the whole process execution
in order to create and maintain the complete history records that contain the errors that were identified
during the whole data cleaning operation process, as well as the corrective and missing value handling
operations that were performed against these errors. Thus, the LoggerService offers the following internal
interfaces:

● create_logs (profile_id: String, logs: DataFrame): This function accepts as input the id of an existing

cleaning profile as well as a DataFrame containing the logs gathered during the cleaning process, and

creates a log file with the contents of that DataFrame.

● get_all_files (): This function returns a list of all the available log files.

● log_contents (file_name: String): This function accepts as input the name of a specific log file and

returns a JSON object containing the contents of that file.

● delete_log_entry (file_name: String): This function accepts as input the name of a specific log file

and deletes that file.

The LoggerController class is a REST controller that exposes some functionalities regarding the logging to the
outer world by using the proper functions of the LoggerService:

● get (file_name: String): This controller-level function is used to fetch the contents of a specific log

file, by invoking the log_contents function of the LoggerService class.

● delete (file_name: String): This controller-level function is used to delete a specific log file, by

invoking the delete_log_entry function of the LoggerService class.

2.4 The INFINITECH Data Collection Solution
As explained in section 2.1, the INFINITECH Data Collection provides via its rich set of offered functionalities
the design, creation and execution of highly configurable data collection pipelines that can be either
automated with the use of well-defined APIs thus leveraging the offerings only programmatically or
incorporate manual steps that require human intervention and interaction with its easy-to-use user interface,
as documented on section 2.2.4.

The first step of the data collection pipeline constitutes the registration of a new data source profile that
contains all the information required in order for the INFINITECH Data Collection either to establish a
connection to the data source (such as an API, a relational DB, an FTP or HTTP server or a HDFS deployment
or MinIO storage server) to retrieve a new dataset or to receive a new dataset from the data source. In this
step the Data Retrieval module of the INFINITECH Data Collection is leveraged. As explained in section 2.2.1
this is mainly a backend operation where a new data source profile is registered via the corresponding APIs
of the INFINITECH Data Collection and the retrieval or reception of a new dataset is either executed on
demand or in a periodical manner.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 60 of 91

Once the new dataset is locally available by the Data Retrieval, the next step of the process is the mapping
step which is executed by utilising the Data Mapper and the data model provided by the data provider. At
first, the data provider is presented with a screen where the column name and infer type of each column
included in the new dataset are extracted from the newly acquired dataset and presented to the data
provider (Figure 31).

Figure 31: INFINITECH Data Collection – Mapping process

During this step, the data provider is able select for each column the appropriate domain, module/ontology
and class of each extracted column. In particular, the Data Mapper extracts the information included in the
provided by the data provider data model and lists the available domains, modules/ontologies and classes to
the data provider in order to select the appropriate option. At first, the data provider selects the
corresponding domain from the list of available domains (Figure 32) and once the domain has been selected
the respective modules/ontologies of the specific domain are presented to the data provider (Figure 33).
Once both the domain and the corresponding module/ontology of the specific domain have been selected
by the data provider, the classes included in the selected module/ontology are presented to the data provider
(Figure 33).

Figure 32: INFINITECH Data Collection – Mapping process (domain selection)

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 61 of 91

Figure 33: INFINITECH Data Collection – Mapping process (module/ontology selection)

Figure 34: INFINITECH Data Collection – Mapping process (class selection)

The data provider is able to the select the appropriate information for each column of the dataset and thus
create the mapping between the entities of the dataset and the underlying data model. The generated
mapping can be saved and exported in JSON format. An additional option is offered by the Data Mapper in
the case where the Data Retrieval is not utilised in the initial step and the dataset is already available locally
on a MinIO storage server or as a file on the local filesystem. In that case, the data provider is instructed to
provide either file containing the dataset (by a drag and drop option) or to provide the MinIO URL from which
the dataset can be directly retrieved (Figure 35, Figure 36).

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 62 of 91

Figure 35: INFINITECH Data Collection – Mapping process (local file selection)

Figure 36: INFINITECH Data Collection – Mapping process (MinIO URL)

In the third and final step, the data provider is able to explore the capabilities of the Data Cleaner of the
INFINITECH Data Collection in order to perform cleaning operations on new dataset. To achieve this, as
explained in section 2.2.3, the data provider should set the validation, the cleaning and missing value handling
rules that will be applied on a column basis. At first, in a similar manner as in the Data Mapper, the data
provider is presented with a screen where the column name of each column included in the new dataset is
extracted from the newly acquired dataset. At this step, the data provider should set the corresponding data
type of each column as well as to select for which columns cleaning operations will be performed (Figure 37).

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 63 of 91

Figure 37: INFINITECH Data Collection – Cleaning process (column type definition and selection)

In the next step, the data provider should define the validation rules for the selected columns by selecting
the validation rule method from the list of available methods and setting the corresponding parameters
depending on the selected validation rule method (Figure 38). In a similar manner, the data provider selects
the cleaning rules for each validation rules that was set in the previous step by selecting the cleaning rule
method and by setting the required arguments (Figure 39). In the third and final step, the data provider
configures the missing value handling rules for the selected columns by selecting the corresponding method
and by setting the required arguments (Figure 40).

Figure 38: INFINITECH Data Collection – Cleaning process (validation rules)

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 64 of 91

Figure 39: INFINITECH Data Collection – Cleaning process (cleaning rules)

Figure 40: INFINITECH Data Collection – Cleaning process (missing value handling rules)

Upon the successful configuration of the required rules on the Data Cleaner, the data provider can execute
the designed cleaning operations and check the execution results (Figure 41). In particular, for each execution
result the Data Cleaner preserves and presents the complete history of the executed operations (constraints
violated, corrective actions taken on a column and row basis) as well as some summary statistics of the
executed operations (Figure 42, Figure 43).

Figure 41: INFINITECH Data Collection – Cleaning process (Execution Logs)

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 65 of 91

Figure 42: INFINITECH Data Collection – Cleaning process (Detailed logs)

Figure 43: INFINITECH Data Collection – Cleaning process (Summary statistics)

The specific section presented the implemented solution from the user’s perspective when the provided user
interfaces are leveraged. However, as explained in the previous sections the complete solution can be
leveraged to design and execute a data collection pipeline which can be operated in a fully automated
manner, in which case the whole process is executed via the use of APIs without any manual intervention.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 66 of 91

3 INFINITECH Synthetic Datasets
The particular section remained unchanged from the previous version. It presents the key characteristics of
the synthetic datasets while also defining their role within the INFINITECH project.

In the age of Big Data, a large variety of data sources produce data at an exponential level. Public and private
organisations are struggling to effectively collect all these enormous amounts of data that contain valuable
detailed information that researchers and decision makers need in order to perform analyses, formulate
predictions, evaluate their strategies and ultimately solve both simple or complex problems. Despite the
increased availability of datasets and the acknowledged request for unrestricted availability of datasets
imposed by the researchers and decision makers, the preservation of the privacy aspects of the individuals
whose sensitive and private information is often included in the datasets, is equally important [1].

Thus, several data privacy-preserving techniques, such as pseudonymization, anonymisation, pseudo
anonymisation, masking techniques, are employed on datasets in order to cope with the privacy concerns.
However, besides the pure need for availability of datasets there is also the need for reliable, relevant and
adequate data that meet certain characteristics, which are critical for the aspired analysis. The data privacy
preserving techniques are posing several restrictions on these required characteristics, hence the quality of
the utilised datasets is in most cases highly compromised. Nevertheless, the generation of Synthetic Datasets,
in which private and sensitive data in the original dataset are replaced with synthetic data, is a viable
alternative to the data privacy preserving techniques.

3.1 The characteristics of Synthetic Datasets
Synthetic datasets are datasets that contain artificially generated data instead of real data which are usually
generated with the help of algorithms and a variety of data modelling techniques. In recent years, synthetic
data generation has gained focus and significant effort has been invested in research for this topic, not only
for its effective usage in a privacy preserving manner, but also for its effectiveness to support validation of
new algorithms and applications which require data that are either not available or not accessible due to
privacy concerns [2].

One of the major advantages of synthetic data is that they can be made publicly available with minimum risk
of data disclosure and maximum utility [1], since the data included is randomly generated with constraints
to hide sensitive private information and retain certain statistical information or relationships between
attributes in the original data [2]. Hence, synthetic datasets can eliminate the barriers in numerous cases
when privacy requirements limit data availability, the way data can be used and shared between multiple
third parties in a collaborative nature thus effectively support research and innovation, as well as decision
making.

Another major advantage of synthetic datasets is that they are generated in a such way that they address
specific needs or conditions and with specific characteristics that are not available in existing (real) data.
Synthetic datasets are often generated by exploiting several algorithms in a manner that enables more
flexibility on the data manipulation aspect towards the effective testing of a broader range of conditions and
use cases. In detail, synthetic datasets generation enables [3]:

a) the control over the data distributions used for the testing and validation of an algorithm’s
performance,

b) the fair performance comparison between different algorithms and
c) the creation of data records with the finest level of granularity in each attribute.

Hence, synthetic data can be valuable to a wide range of activities, including effective testing of new software
systems and applications, training and validation of machine learning models, as well as all the cases where
data are needed but they are not available, are too expensive to be generated as real data, or do not exist at
all.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 67 of 91

In general, synthetic datasets can be classified into the following three main categories:

a) Fully Synthetic Data: The fully synthetic data does not contain any real data. For this reason, re-
identification of any individual is almost impossible, while at the same time it is ensured that all
variables of the datasets are fully available. In this case, during the fully synthetic data generation,
the procedure that is followed utilizes multiple imputation in order to replace the values of certain
attributes for all the data points in the dataset [1]. The process includes multiple steps in which the
density function of attributes in real data is identified and the parameters of these functions are
estimated, before generating a privacy protected series of randomly selected values from these
estimated density functions [2].

b) Partially Synthetic Data: The partially synthetic data contain real data and only the sensitive data is
replaced with synthetic data. Hence, only data that raise risk of personal or sensitive information
disclosure is replaced. Their generation is largely dependent on the utilised imputation model and
the risk of disclosure is higher than in fully synthetic data, as real data is still included in the dataset.
To generate the synthetic values for the selected attributes, multiple imputation and model-based
techniques are also used [2].

c) Hybrid Synthetic Data: The hybrid synthetic data are generated utilising a limited volume of real data
or synthetic data that were generated by domain experts. In the course of hybrid synthetic data
generation, the distribution of the real data is analysed and the nearest record in the synthetic data
is chosen, while ensuring both the relationship and the integrity between other attributes of the
dataset. Hybrid synthetic data holds the advantages of both fully and partially synthetic data,
providing adequate privacy preservation with high utility compared to fully synthetic and partially
synthetic data, but at the cost of more memory and processing time [2].

In order to benefit from the usage of the synthetic datasets, it is important to possess a thorough knowledge
of the domain for which data will be generated, as well as to follow a set of principles during the generation
process, and finally to choose the correct methodology for the generation process, depending on the needs
that these datasets will cover. During the synthetic data generation, a set of principles and restrictions are
implied. Synthetic datasets are domain-dependent and for this reason it is crucial to utilise a real dataset
during the synthetic data generation process, in order to ensure the properties of the dataset are satisfied.
For this reason, a good understanding of the domain for which data are generated is also required [2].
Furthermore, both the domain and the data type that are generated are significantly affecting the complexity
of the required synthetic data generation process.

Synthetic datasets have also restrictions as it is the case of real data. It should be acknowledged that during
the synthetic data generation process, specific attributes of the data are only replicated, hence in principal
general trends are simulated. While fully synthetic data has strong resistance to disclosure risk, these data
lack truthfulness [2]. In addition to this, most of the times fully synthetic data are extremely useful for
research purposes, however their usage in commercial products is usually limited. On the other hand, the
support of partially synthetic data generation is very limited from the available techniques as most of the
techniques that are available are mostly suitable for fully synthetic data generation. Finally, the complexity
of the process is strongly dependent on the type of data that should be replicated, as for example static data
is usually less challenging than streaming data for which the distribution of data is not usually known
beforehand.

The complexity of the synthetic data generation process is highly dependent on the domain for which data
should be synthesized, as well as the usage purpose of the generated synthetic datasets. As such, usually it
goes beyond the simplistic solution of drawing numbers from a distribution that is created either based on
the observation of the existing distribution from real data or from a comprehensive understanding of how
the distribution would be like in the dataset in the case where real data do not exist. Usually, data modelling
techniques are applied with the aim of replicating the required data. The existence or not of real data
practically drives the decisions related to the data modelling technique. In the first case, the real data are
exploited in order to generate fully synthetic or partially synthetic data by extracting the characteristics of
the data and modelling them using usually probability density functions in order to perform multiple

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 68 of 91

imputation. In the latter case where real do not exist or are not available due to privacy restrictions, the
domain expert should define rules, constraints and relationships to effectively model the data, thus it is
imperative to have extensive knowledge of the domain for which data will be generated [2]. In both cases,
machine learning and deep learning models are utilised in the process in order to perform the multiple
imputation, treating the values of the selected attributes as missing values which are generated using models
such as Decision Trees, Random Forest, Support Vector Machine and Generative Adversarial Networks, and
more [1].

The synthetic data generation process is facilitated by a large variety of libraries, frameworks and tools that
the domain experts can utilise based on their needs and preferences. The most dominant libraries and
frameworks are based on the Python and R programming languages, while there are also libraries and
frameworks offered in other programming languages such as Java.

Scikit-learn3 is the python well-established ML library that offers an extensive list of ML algorithms which are
exploited in a large variety of synthetic data generation processes, such as the regression problem
generation, classification problem generation, clustering problem generation, anisotropic cluster generation,
concentric ring cluster data generation and moon-shaped cluster data generation. On the other hand, when
it comes for categorical data generation, pydbgen4 is a lightweight python library that is capable of generating
a large database with multiple tables, filled with meaningful yet random data which can be ingested into a
database, loaded as a dataframe in Pandas5 or saved as an Excel file for further processing. Synthpop6 is also
a popular R library utilised for producing synthetic versions of microdata containing confidential information
enabling their sharing and exploratory analysis. DataGenerator7 is a Java based library that is capable of
producing large volumes of data, framing data production as a modelling problem, with a user providing a
model of dependencies among variables and the library traversing the model to produce relevant datasets.
Another example is several online open-source or commercial platforms that enable the generation of
realistic synthetic (usually structured) datasets which are mostly utilised for testing purposes such as
Mockaroo8, GenerateData9 and OnlineDataGenerator10. In addition to these libraries and online tools, a
plethora of candidate libraries and frameworks are available for usage depending on the scope of the
synthetic data generation process and the preferences of the domain experts.

3.2 The role of Synthetic Datasets in INFINITECH
The financial and insurance sectors generate data in massive and increasing volume with high velocity and in
a large variety of data types and formats. Despite the availability of these data, multiple restrictions and
barriers are imposed to their usage and sharing due to the nature of the personal and sensitive information
that is included on these datasets. As both sectors are highly regulated with strict legislations and processes,
these collected data are mostly stored in silos within the organisations and severe limitations are applied
when it comes to processing and sharing them even within the same organisation’s different departments
and especially outside the organisation’s boundaries. As a consequence, the various research and business
development activities are facing the lack of data that will enable them to perform the required and effective
analysis, prediction generation and strategy evaluation.

3 Scikit-learn, https://scikit-learn.org/stable/

4 pydbgen, https://pydbgen.readthedocs.io/en/latest/

5 Pandas Python, https://pandas.pydata.org/

6 Synthpop, https://www.synthpop.org.uk/

7 DataGenerator, https://finraos.github.io/DataGenerator/

8 Mockaroo, https://www.mockaroo.com/

9 GenerateData, http://generatedata.com/

10 Online Data Generator, https://www.onlinedatagenerator.com/

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 69 of 91

Towards this end, the synthetic data generation approach is providing an appealing solution to overcome
these restrictions and the problem of data unavailability in the finance and insurance sectors, as it ensures
the required privacy preservation and at the same provides the means to the researchers and decision
makers to perform the research and business development activities. In this sense, within the context of
INFINITECH the synthetic data generation will be leveraged in order to overcome the aforementioned
difficulties where needed and to facilitate the design and implementation of innovative financial and
insurance services. In particular, the use cases and motivation for synthetic data generation, which are
applicable in the finance and insurance sectors and are taken under consideration in INFINITECH, can be
described in the following axes [4]:

• Internal data use restrictions: The imposed privacy requirements that limit data availability and
prevent data sharing internally within a finance or insurance organization can be mitigated with the
use of synthetic datasets.

• Lack of historical data: In some cases, the lack or limited availability of historical data which are
needed in order to effectively perform the required analysis is posing limitations. Hence, with the
use of synthetic data, these barriers can be removed.

• Class imbalance: The datasets which are utilised in several use cases, such as fraud detection, are
imbalanced hence traditional machine learning techniques and anomaly detection techniques will
often fail. Thus, synthetic data with more realistic attribute values generated with the appropriate
data imputation techniques are characterized as more suitable for the aspired analysis.

• Training advanced ML models: Training of advanced machine learning models require vast amount
of data, which should also probably be transferred into the appropriate infrastructure that is capable
of performing such computationally intensive operations and might be outside of the boundaries of
the organisation. Hence, the usage of synthetic datasets resolves both the need for large volume of
data and the imposed privacy requirements.

• Data Sharing: The main restriction of the data originating from the finance and insurance sectors is
that data sharing is severely restricted. Thus, data sharing between the organisations or within the
research community which will enable the design, experimentation and implementation of
innovative financial and insurance services, is very limited. However, the nature of synthetic data
offers the potential to meet the imposed data sharing restrictions and enable the research and
innovation.

Within the context of INFINITECH, several pilots exploit the benefits offered by the usage of synthetic
datasets towards the validation of the INFINITECH offerings from both a technical/technological and a
business/economic perspective. In this context, synthetic datasets are prepared by the pilot’s domain
experts in order to be exploited during the execution phase of each pilot. The format of the synthetic datasets
will vary from semi-structured (CSV, JSON, GeoJSON) to unstructured formats (txt, NetCDF) depending on the
needs of each pilot. In the same manner, the volume of each synthetic data that will be exploited will vary
from 10 MB per executed use case to 20 GB, depending on the executed scenario.

The main categories of the synthetic data that will be utilized within the context of the INFINITECH Pilots are
the following:

a) Customer Profiles
b) Customer Accounts
c) Customer Data
d) Financial Transaction Data
e) Connected Car Data
f) Traffic Data
g) Activity Tracking Data
h) Crop Biophysical Parameters and Loss Data
i) Seasonal Crop Yield Prediction Data
j) SME Company Profile Data

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 70 of 91

These synthetic data are available in the respective testbed of each pilot that exploit them. The data
collection process that will be utilised in order to ingest the respective synthetic data along with any real data
that will exploited into the testbed of each pilot is presented in Section 4. The list of synthetic datasets of
each pilot along with in-depth details is described in Appendix B.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 71 of 91

4 INFINITECH Pilot Use Cases
Updates from D5.13:
The particular section received several updates in order to document the advancements on the data
collection process of the pilot from the previous version. Besides the several optimisations and updates that
were introduced across the whole section, the following updates should be highlighted:

• The description of the data collection process of two additional pilots (Pilot 7 & Pilot 15) was
introduced

• The description of one pilot (Pilot 1) has been removed as the specific pilot has been deprecated
from the project as part of the latest amendment process

The scope of the current section is to provide the updated documentation of the details of the datasets, both
real and synthetic, that are collected by the INFINITECH pilots in order to be harmonized, anonymised and
ingested into the underlying storage. The list of collected dataset vary based on the extended list of diverse
scenarios from the finance and insurance sectors that the INFINITECH pilots are implementing. Hence,
different approaches are followed within the context of each depending on their scope and the peculiarities
of each scenario. It should be noted that the complete documentation with regards to the data collection
processes that are followed on each pilot and their implementation are thoroughly documented within the
deliverable D7.2.

In the following paragraphs, the focus is on presenting the updated and final list of the datasets that are
leveraged by the pilots, accompanied by the details for the information included, their data format and the
anonymisation needs, where applicable. These datasets are collected by the data collection process of each
pilot as documented in D7.2.

It should be noted that the description of the data collection processes of Pilot#1 and Pilot #3 is not included
in the current version of the deliverable for various reasons. On the one hand, Pilot #1 has been deprecated
from the project as part of the latest amendment process at the moment of writing the deliverable, while on
the other hand Pilot #3 is currently in redesign state.

4.1 Pilot #2 - Real-time risk assessment in Investment Banking
The scope of Pilot #2 is to design and implement a real-time risk assessment and monitoring procedure that
aims to facilitate the generation of risk information for asset management with two standard metrics, namely
the VaR (Value-at-Risk) and the ES (Expected Shortfall). To this end, the pilot performs the measurement of
market risks of assets portfolios, while also evaluating what-if scenarios for pre-trade analysis.

With regards to the datasets that are exploited, the pilot mainly leverages Foreign Exchange (FOREX) market
data in order to calculate the Value-at-Risk (VaR) for various portfolio compositions. In detail, two main types
of input datasets are used, the first one includes trades associated with a portfolio composition to be
analysed (“TradeData”), while the second one includes price data (“TickData”) regarding the FOREX market.
The pilot also leverages alternative data, such as derived analysis data and news data, that are used in the
performed analysis. All data types have quite simple structures and are presented in the table below:

Table 25: Pilot #2 List of datasets

Dataset Name Dataset description Data
format

Anonymization

TradeData Trades associated with a portfolio composition. The

TradeData will comprise the following three

columns:

CSV / Real-
time Data
stream

No
anonymisation

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 72 of 91

▪ SymbolID, i.e. the name of the instrument in

FOREX trading e.g., GBPUSD for the

exchange of GBP to USD ($)

▪ Timestamp (in UNIX format) denotes when

the trading took place.

▪ Quantity, i.e. the amount traded which will

be a negative number in case of selling and

a positive number in case of buying.

TickData High frequency (~1 sec) ticker data. Tick data is

associated with any change in the security price,

whether that movement is up or down. The given

dataset comprises tick data of major Forex

instruments such as EUR/USD, GBP/USD, EUR/CHF

and EUR/CAD for the period 01/04/2020 -

30/09/2021.

The dataset has the following columns:

▪ SymbolID, i.e., the name of the instrument in

FOREX trading, e.g., GBPUSD for the

exchange of GBP to USD ($),

▪ Timestamp (in UNIX format),

▪ Open,

▪ High,

▪ Low,

▪ Close.

Columns 3-6 denote the price (e.g., open price) of

the instrument for the given timestamp.

CSV / Real-
time Data
stream

No
anonymisation

Derived analysis
data

Daily Value at Risk and Expected Shortfall

estimations based on the input Trades and Tick data

CSV No
anonymisation

News articles and
Twitter data

Open source sample data for Market Sentiment

Analysis

Text No
anonymisation

To facilitate the process, both TradeData and TickData datasets are provided in two flavours, the Real-time
market feeds associated with the real-time operation of the market and the historical datasets that are used
for various calculations. The market data are real data, retrieved from a financial data service provider while
the trade data are the trading signals generated by JRC’s algorithmic trading strategies, and no real trades
are executed. The data are accessible to their end-users (i.e., traders) and no anonymization processes will
take place.

For testing and experimentation purposes existing datasets in CSV formats are used. Hence, the format of
the data is CSV and real-time data stream containing text and numeric data related to public market data and
synthetic portfolio composition data.

To support experimentation, validation and deployment in production, the data collection processes leverage
data from the following data sources:

• Forex APIs, which are mainly used for testing and experimentation purposes. They provide access to
both real-time and historical values of FX data.

• Data from the JRC Trading Platforms, which are used to provide real-time trading values with high
ingestion rates.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 73 of 91

• Data from the JRC Trading Datawarehouse, which provide access to historical information (e.g., close
values) for the forex assets that are entailed in the pilot.

4.2 Pilot #4 Personalized Portfolio Management (“Why Private
Banking cannot be for everyone?”)

The scope of Pilot #4 is to develop and integrate within the SaaS based Privé Managers Wealth Management
Platform an Optimization algorithm (further on called Privé Optimizer “AIGO”), as well as to improve and
expand its capabilities as an artificial intelligence engine to aid investment propositions for retail clients.
Hence, pilot #4 aims to exploit the capabilities of AI-Based Portfolio construction for Wealth Management
processes in order facilitate the advisors and/or end-customers utilising the Privé Managers Wealth
Management Platform to effectively consume the offered risk-profiling and investment proposal capabilities,
starting from their personal risk-awareness.

The innovative AIGO genetic algorithm is capable of proposing investments which are in turn evaluated based
on a set of fitness factors which are composed by easy-to-use, personalized set of criteria. Based on the
fitness factors, “health” score will be generated for each portfolio that will drive the definition of the “fittest”
investments. To achieve this, a series of datasets are leveraged which are presented in the following table:

 Table 26: Pilot #4 List of datasets

Dataset Name Dataset description Data
format

Anonymization

Customer
Transactions
Data

Customer Transactions Data fetched directly from
the Bank or an Asset Manager. It consists of
customer securities and cash transactions through
their deposit accounts.

CSV Confidential data

Financial
Market Price
Data

Financial Market Price Data fetched from several
Market Data Providers. It consists of price data for
Stocks, Bonds, Mutual Funds and or other assets
like certificates/warrants.

Text Open, partially
license agreements
with data providers
needed

Financial
Market Asset
Master Data

Financial Market Asset Master Data fetched from
several Market Data Providers. It consists of asset
related characteristics (e.g. expiration date,
minimum investment amount, asset class
breakdowns).

Text Open, partially
license agreements
with data providers
needed

Customer Risk
Profile Data

Customer Risk Profile Data fetched directly from
the Bank or an Asset Manager. It consists of
customer Risk Profile Data through their account
data and profiling, based on B2B customers
parameters.

CSV Confidential data

Mutual Fund,
ETF and
Structured
Products
Breakdown

Mutual Fund, ETF and Structured Products
Breakdown fetched from several Market Data
Providers. It consists of asset breakdowns based on
bank data or market data providers breakdown.

CSV Open/Confidential
data, partially
license agreements
with data providers
needed

Customer
Economic
Outlook

Customer Economic Outlook fetched directly from
the Bank or an Asset Manager based on
questionnaires and Customer Profiles.

CSV Confidential data

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 74 of 91

Risk metrics
figures Portfolio data is used to calculate portfolio metrics

like portfolio performance, volatility, sharpe ratio
and other risk figures.

CSV or
customized

No need as they are
synthetic.

With regards to the anonymisation of the aforementioned confidential datasets, no anonymisation is
foreseen as the data are privately kept within the premises of Privé. Additionally, the input that is taken from
these datasets in order to be fed to the optimisation process does not include any sensitive or private data.

4.3 Pilot #5b - Business Financial Management (BFM) tools
delivering a Smart Business Advise

The scope of Pilot #5b is to provide the means to the SMEs which are clients of Bank of Cyprus (BoC) to
effectively and efficiently manage their financial health, in multiple areas such as cash flow management,
continuous spending/cost analysis, budgeting, revenue review and VAT provisioning by employing a set of
AI-powered Business Financial Management tools and harnessing available data to generate personalized
business insights and recommendations.

Hence, the multiple diverse datasets are collected and processed in the course of development of the specific
pilot. In detail, most of the datasets that are utilized, are extracted from BoC databases and are related to
financial transactions, account profiles and relevant data of BoC’s SME customers. Furthermore, BoC’s SME
customers transaction data with other banks which are retrievable from Open Banking under PSD2 are also
collected, as well as open-source macroeconomic data from sources like Eurostat or data.gov.cy.

The use of surrogate/analogous data is leveraged in the context of the CashFlow prediction service to
increase the added-value and impact of the utilized deep learning probabilistic models, since they benefit
from the increased diversity and volume of the training data. It is expected that the usage of analogous data
will help the generalization of some, if not all deep learning models in the case of time series forecasting.
Within the context of the pilot, the Iterated Amplitude Adjusted Fourier-Transformed (IAAFT) is used in order
to produce the surrogate data that was then merged with the real ones in order to enhance the time-series
historical transactions dataset.

The following table depicts the list of datasets that are used, providing for each dataset a short description,
the respective data format and the anonymization requirements.

Table 27: Pilot #5b list of datasets

Dataset Name Dataset description Data
format

Anonymization

Transaction
Data from the
Bank

SME Customers Transactions Dataset from BoC CSV Already
anonymized

Transaction
Data from Open
Banking (PSD2)

SME Customers Transactions Dataset from
financial institutions other than BoC.
BATCH input (e.g. every 6 hours or every night)

CSV Already
anonymized

Accounts Data
from Bank

Account data regarding SME customers of BoC.
E.g. Balances, Available amount, account type

CSV Already
anonymized

Customer Data
from Bank

Customer Demographics CSV Already
anonymized

Other Data
(Market)

Macroeconomic SME related data from
public/private resources (e.g.

CSV / JSON Open source data

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 75 of 91

https://www.data.gov.cy/ &
https://ec.europa.eu/eurostat/data/database)

Other Data from
SME

Other Data that is provided by the SME
ERP/Accounting system (e.g. number of customers,
suppliers, stock). Non- transactions related data

CSV/ JSON Via the GRAD
anonymization
solution

Transaction
Data from SME

Data that is provided by the SME ERP/Accounting
system and relates directly or indirectly to account
debit/ credit transactions. For instance, invoice data;
non PSD2 data (i.e. payment account related) e.g.
saving accounts in financial institutions other than
BOC

CSV/ JSON Via the GRAD
anonymization
solution

Surrogate data Surrogate data created based on Iterated Amplitude
Adjusted Fourier-Transformed IAAFT in order to
enhance the time-series historical transactions
dataset used for the Cash-Flow prediction service.

CSV No need as they
are synthetic.

As described in the table above, most of the datasets will already be anonymised before being imported to
the INFINITECH platform. Data originating from BoC activities and databases are pseudonymized before being
extracted to the platform using the tokenization approach, where sensitive data are being replaced with non-
sensitive equivalents, which can only be reversed in the tokenization vault that resides on BoC premises.

4.4 Pilot #6 - Personalized Closed-Loop Investment Portfolio
Management for Retail Customers

The scope of Pilot #6 is to design and deliver a personalized investment recommendations system tailored to
the needs of the retail customers of NBG. In this process, a variety of diverse datasets from different data
sources in large volumes is leveraged towards the aim of providing investment recommendations to retail
customer more targeted, automated, effective, as well as context-aware (i.e., tailored to state of the market).

The datasets are generated from NBG Operational Databases in CSV/TXT format and are in a way
anonymized, as all critical information is converted to specific IDs that the reference to the actual information
is privately kept within the bank premises. The list of the datasets that are utilised is as follows:

Table 28: Pilot #6 List of datasets

Dataset Name Dataset description Data
format

Anonymization

Deposit Account
Transactions

Customers' transactions performed through their
deposit accounts for the last two (2) years, for each
deposit product account that the customer
possesses. The Deposits Account transactions data
include category amount, date, time and channel
that were performed.

CSV / Text Already
anonymized

Cards
Transactions

Customers' transactions performed through their
cards for the last two (2) years, for each card
product that the customer is a card holder. The
Cards Transactions data include date, time, card
type, merchant category, amount in euros and
foreign currency, instalment or cash purchase,
transaction type and channel (POS, e-commerce,
ATM).

CSV / Text Already
anonymized

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 76 of 91

Instruments
Historical Prices

Historical prices of investment instruments that
NBG offers to the customers for the last two (2)
years, including for each instrument the details of
date, closing price, closing price currency, total
transactions volume, market code, effective and
ending date.

CSV / Text Already
anonymized

Investment
Related
Transactions

Customers' transactions related to investment
products for the last two (2) years, containing date,
time, account used, instrument, settled amount,
settled currency, maturity date, quantity,
instrument price, investment amount gross and net,
financial market, investment transaction type.

CSV / Text Already
anonymized

Instruments
Characteristics

Detailed characteristics for all instruments that will
be considered in the pilot, including instrument
type, instrument asset class, currency, ISIN, issue
date, maturity date, instrument pieces (e.g. shares).

CSV / Text Already
anonymized

CRM Data Customer related data like demographics, product
ownership and responses to MIFID questionnaires.
The data that will be available for the pilot include
customer type, birth date, gender, marital status,
child number, profession category, origin country,
type of employment, customer risk category (bank’s
calculation engine).

CSV / Text Already
anonymized

4.5 Pilot #7 - Avoiding Financial Crime
The scope of Pilot #7 is to design and deliver a Data Model to identify fraudulent transactions. In essence,
the pilot has chosen a banking service that lately has been used by fraudsters to commit fraud. This service
is the immediate loan, which is a loan that doesn’t need to be approved by the bank, but it is pre-approved
based on the economic profile of the client. Fraudsters are now aware that although the client has no money
in the account, they can ask for this immediate loan and commit fraud for a larger amount making the fraud
even worse than before because the client suffer from the fraud of money they don’t have and the fraudster
leaves him with no money and a debt.

The following table depicts the list of datasets that are used, providing for each dataset a short description,
the respective data format and the anonymization requirements.

Table 29: Pilot #7 List of datasets

Dataset Name Dataset description Data
format

Anonymization

List of Immediate
loans

Real list of all the immediate loans processed by
internet from October 2020 to March 2021. The
Dataset has been labelled with the fraudulent
transactions therefore we can apply supervised
algorithms to the model. In the Dataset there are all
the fields describing an operation of this kind, and
for this reason was necessary to anonymize the
personal and sensitive data as this Dataset
contained details of clients. Concretely, the
following fields have been anonymized:

- FK_NUMPERSO : hash
- IP_TERMINAL : hash

CSV / Text Anonymized

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 77 of 91

- FK_NUMPERSO_TIT_LOE: hash
- SALDO_ANTES_PRESTAMO: rounded to

hundreds
- FECHA_ALTA_CLIENTE: modified data to -

100 days
- FK_NUMPERSO: is a user identifier
- IP_TERMINAL is the IP connection
- FK_NUMPERSO_TIT_LOE is a identifier
- SALDO_ANTES_PRESTAMO: Amount in the

account
- FECHA_ALTA_CLIENTE: Date of client’s

acquisition

4.6 Pilot #8 - Platform for Anti Money Laundering Supervision
(PAMLS)

The scope of Pilot #8 is to design and implement a platform that performs anti-money laundering Supervision
(PAMLS) with the aim of enhancing the efficiency and effectiveness of the existing supervisory activities in
the area of anti- money laundering and combating terrorist financing (AML/ CTF). Pilot #8 is leveraging the
characteristics of Big Data which are owned by the Bank of Slovenia (BOS) and other competent authorities
(FIU). To this end, the PAMLS platform offers, among others, a risk assessment tool, a screening tool, a search
engine and a distributed channel.

Within the context of the specific pilot, multiple real datasets originating from various heterogeneous data
sources are exploited. The relevant information of the aforementioned datasets is summarized in the
following table:

Table 30: Pilot #8 list of datasets

Dataset Name Dataset description Data
format

Anonymization

TARGET2
transactions

Transactions executed by the Slovenian payment
institutions within TARGET2 (Trans-European
Automated Real-time Gross Settlement Express
Transfer System):

▪ high value (above 50.000 EUR), urgent
transactions in EUR;

▪ transactions processed through BOS payment
systems (responsible BOS Payment Settlement
and Systems department - PPS).

TARGET2 transactions include following data
relevant for PAMLS:
transaction date, transaction value, payer data
(transaction account no., name and address), payer
bank data and BIC code, payee data (transaction
account no., name and address), payee bank data
and BIC code, intermediary bank data.

XLSX
(txt or
numeric)

Anonymised

SEPA
transactions

Transactions executed by the Slovenian payment
institutions within SEPA (Single Euro Payments
Area):

▪ domestic and international transactions within
SEPA area in EUR under 50.000EUR value;

XLSX
(txt or
numeric

Anonymised

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 78 of 91

▪ transactions processed through payment
systems by third party provider.

SEPA transactions include following data relevant for
PAMLS:
transaction date, transaction value, payer data
(transaction account no., name and address), payer
bank data and BIC code, payee data (transaction
account no., name and address), payee bank data
and BIC code, intermediary bank data.

Slovene
Financial
Intelligence Unit
(FIU)
transactions
(public data)

Transactions above 15.000 EUR, related to high risk
countries and reported to the FIU.

XLSX
(txt or
numeric

Open Data

FI identification
data

Identification information about Financial Institution
(FI) that they send by report to the BOS (reports are
confidential). The data are statistical data on the FI
inherent risk and control environment (number of
clients, number of Suspicious transactions reports
(STR) etc.)

XLSX
(txt or
numeric

Not anonymised

ePRS data Slovenian Business Register (public data on legal
entities).

XLSX
(txt or
numeric

Open Data

eRTR data Slovenian Transactions Accounts Register (public
data on legal entities).

XLSX
(txt or
numeric

Open Data

It should be noted that due to the high confidentiality requirements, the transactions analysed within PAMLS
datasets will not be transferred outside BOS premises and will not be shared on the INFINITECH platform.

Since the data included in both the TARGET2 and the SEPA transactions contain both personal and
confidential data, it will be ensured that the data privacy and data confidentiality aspects are properly
addressed. In this context, within the TARGET2 and SEPA transactions datasets, the payer data (transaction
account number, name and address) and payee data (transaction account number, name and address) are
anonymised prior to being delivered to PAMLS in order to eliminate the disclosure of personal or confidential
information. With regards to the FIU transactions, the ePRS and eRTR datasets, there is no need for
anonymisation as they are publicly available datasets provided by the FIU. In the same manner, the FI
identification data owned by BOS do not require any anonymisation to be applied as they are compiled by
statistical data with no personal or confidential data.

4.7 Pilot #9 - Analyzing Blockchain Transaction Graphs for
Fraudulent Activities

The scope of Pilot #9 is to design and develop a parallel and scalable system that will facilitate the formulation
of a massive Bitcoin and Ethereum blockchain transaction graph with distributed dynamic data structures,
exploiting the capabilities of an HPC cluster. In this transaction graph, an analysis is performed utilising a
variety of graph and machine learning algorithms in order to investigate and identify blockchain account
transactions that can be traced to fraudulent activities or accounts.

Within the context of Pilot#9, massive actual public anonymous chain data which are available from
Ethereum and Bitcoin chains are collected and utilised. These raw data are obtained from actual blockchain

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 79 of 91

nodes or gateways or a service like Google BigQuery. Due to the nature of the blockchain technology, as well
as the peculiarities of the data stored within a blockchain network, the collected blockchain datasets differ
from the usual datasets. In particular, the Bitcoin raw blocks are parsed in order to be stored as files that
contain the respective transactions, while the Ethereum raw blocks are firstly joined and then parsed in order
to be stored as files also. The collected transactions are stored in bzip2 compressed files. The following table
presents the details of the collected datasets.

Table 31: Pilot #9 list of datasets

Dataset Name Dataset description Data
format

Anonymization

Ethereum
Mainnet
Blockchain
Dataset

Blockchain data collected from Ethereum Mainnet

containing:

• Blocks from 0 to 10.199.999

• Time coverage from 30.07.2015 to

04.06.2020

• 766.899.042 transactions

• 78.945.214 addresses

• 43.371.941 of 40 Major ERC20 Token

Transfer Transactions

• Symbols of 40 Major ERC20 Tokens: USDT

TRYb XAUt BNB LEO LINK HT HEDG MKR CRO

VEN INO PAX INB SNX REP MOF ZRX SXP OKB

XIN OMG SAI HOT DAI EURS HPT BUSD USDC

SUSD HDG QCAD PLUS BTCB WBTC cWBTC

renBTC sBTC imBTC pBTC

• 21 GB zipped data or 81GB unzipped data

bzip2 No
anonymisation

Bitcoin
Blockchain
Dataset

Bitcoin blockchain data containing:

• Blocks from 0 to 674999

• Time coverage from 03.01.2009 to

17.03.2021

• 625.570.924 transactions

• 800.017.678 addresses

• 112 GB zipped data or 382 GB unzipped data

bzip2 No
anonymisation

4.8 Pilot #10 - Real-time cybersecurity analytics on Financial
Transactions’ BigData

The main objective of Pilot #10 is to significantly improve the detection rate of malicious events (i.e., frauds
attempts) and enable the identification of security-related anomalies while they are occurring with the real-
time analysis of the financial transactions of a home and mobile banking system.

Within the context of the pilot, the datasets that are used are related to SEPA bank transfer transactions. In
detail, synthetic datasets that are consistent with the real data present are created in the data operations
environment. During the synthetic data creation, models are built from real world data and domain
knowledge. The data are synthetized using a set of generators which are based on a lightweight agent-based
modelling framework while using inferred distributions. Dimensional data are generated either from classical
parametric random generators, or from inferred non-parametric distributions. Every synthetic dataset is

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 80 of 91

represented as a scenario, in which dimensional data are generated either from classical parametric random
generators, or from inferred non-parametric distributions. The datasets are then produced as interactions
between agents, which use the dimensional data as input to determine their behaviour. The starting point
for the synthetic dataset creation is randomly generated personal data with no correlation with real people.
The datasets are in CSV or ORC format with temporal coverage for the whole year 2019 and an estimated
size of 3,5 GB and are treated as a confidential dataset. The following table documents the details of the
collected datasets.

Table 32: Pilot #10 list of datasets

Dataset Name Dataset description Data
format

Anonymization

Bank Transfer
SEPA

Single Euro Payments Area (SEPA) transactions that
cover predominantly normal bank transfers.

CSV or ORC No
anonymisation
(fully synthetic
datasets)

4.9 Pilot #11 - Personalized insurance products based on IoT
connected vehicles

The main objective of Pilot #11 is to improve the risk profiles in car insurance by using the information
collected from connected vehicles and applying Artificial Intelligence technologies. Within the context of this
specific pilot, a “Pay as you drive” service capable of adapting the insurance costs to the actual driver’s way
of driving is developed. A “Fraud detection” service aiming to help insurance companies is also developed.

In order to prevent data protection issues, an Anonymization Tool that is offered by GRAD is used. Within
Pilot #11, the Anonymization Tool is exploited in order to effectively address all the data privacy concerns
related to the location privacy. Therefore, the specialised anonymisation algorithm offered by the tool is
applied to the geolocated data with the aim of ensuring that user's exact spatial coordinates are not revealed
as this could lead to a possible re-identification of the data subjects.

The open standard FIWARE NGSI serves as the basis for the implementation of the data gathering process
within Pilot #11 and specifically an instance of its NGSIv2 interface. In this context, all data stored in the
Connected Car Platform, that manages the data collection process of Pilot #11, are generated according to
the FIWARE Vehicle Data model [5], the FIWARE Alert Data model [6] and the FIWARE Weather Observed
Data model [7] and in NGSI format, so that they can be retrieved using the same standard and the whole
process is aligned with the published ETSI NGSI-LD specification [8].

Table 33: Pilot #11 List of datasets

Dataset Name Dataset description Data
format

Anonymization

Connected
Vehicles

Data collected from connected vehicles (provided
Automotive Technology Centre of Galicia – CTAG).
CANBus + NMEA (location) from real connected
vehicles.

CSV GRAD
Anonymisation
Tool

Simulated
Vehicles

Simulated Urban mobility data (mainly vehicles CAN

Signals) generated through SUMO tool. One scenario

reporting 30K vehicles (around 8 Gb of data)

JSON No
anonymisation
(synthetic
datasets)

Roads datasets Roads data extracted from OpenStreetMap (2 Gb for
considered scenarios).

JSON N/A

Weather
information

Collected from AEMET weather stations. 2k
registries (around 1 Mb of data).

JSON N/A

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 81 of 91

Traffic Events Traffic events published by DGT. 1k registries
(around 0,5 Mb of data).

JSON N/A

Historical
datasets
(CANBus data +
NMEA)

Historical datasets (CANBus data + NMEA) from real
connected vehicles

CSV Anonymised

Historical
datasets (traffic
events)

Historical datasets from traffic events JSON N/A

Motor
Insurance Data

Data concerning motor insurance including data
from the policies (duration, covers), data from
vehicles (licence No, VIN etc.) and data from drivers
(age, experience etc.)

CSV

Anonymised

4.10 Pilot #12 - Real World Data for Novel Health-Insurance
products

The scope of Pilot #12 is to assist health insurance companies in improving the risk insurance profiles using
the information collected by activity trackers and questionnaires, and by applying IoT & ML technologies on
the collected information. In this context, the pilot aims to deliver two distinct services, one performing risk
assessment and another one for fraudulent behaviour detection.

To this extend, Real-World Data (RWD) spanning from physiological, psychological to social and
environmental aspects, as well as synthetic data (simulated lifestyle) are collected in the context of the pilot.
These data are either measured using sensors on devices, or are reported by the participants via
questionnaires. Both the measurements and the questionnaire posting and answering are managed by the
Healthentia platform11 of Innovation Sprint. Besides the RWD, synthetic data are provided, utilising a
simulation tool that Innovation Sprint is developing. The data types are similar to the ones collected by actual
Pilot #12 participants. The produced synthetic data are stored in Healthentia platform, so they will be
accessed by the Pilot #12 INFINITECH infrastructure in the same as manner as with the actual data.

Currently the pilot has finished with the initial, proof of concept (PoC) and the data collection phases and is
recruiting participants from the general population. The data to be collected in this third phase is a more
mature version of that of the previous phases documented in D5.13. The new version is documented in the
following table.

Table 34: Pilot #12 List of datasets

Dataset Name Dataset description Data
format

Anonymization

Physiological
measurements

The data physiological data collected are related to
steps, distance travelled, time spent in different
activity intensity categories, energy burned, floors
climbed, exercise sessions. In the case where the
participant has an activity tracker (Fitbit, Garmin, or
anything feeding Apple Health with data), then
resting heart rate, time spent in different heart rate
zones, time to bed and wake up, time spent in
different sleep zones is also measured. In the case
where no activity tracker is available, widgets are
employed to collect time of sleep and wake up. In

JSON GRAD
Anonymisation
Tool

11 Healthentia Platform, https://innovationsprint.eu/healthentia/

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 82 of 91

both cases, liquid and food intake is also collected via
widgets, while body weight and various symptoms
(blood pressure, body temperature, cough,
diarrhoea, fatigue, headache and pain) can be
entered at arbitrary times by the participants.

Health self-
assessment

Daily health perception is collected via a
questionnaire.

JSON GRAD
Anonymisation
Tool

Quality of life
self-assessment

A weekly questionnaire is employed to collect the
perception on different aspects of life quality.

JSON GRAD
Anonymisation
Tool

The data collected by Healthentia is ingested into the NOVA testbed for model training. Since the data contain
personal and / or sensitive data, the Anonymisation Tool offered by GRAD is used in order to anonymise the
data in a way the participants’ privacy is preserved, hence removing any data privacy concerns. In particular,
different anonymization algorithms (such as generalization, randomization, etc.) are applied to avoid the
existence of data combinations that could lead to a possible re-identification of the data subjects.
Additionally, a set of privacy and utility metrics that allow to measure the risk that remains after anonymizing
the data and the impact of the anonymization process on the quality of the data, are calculated by the
Anonymisation Tool and the results of the applied anonymisation algorithms will be assessed before the final
decision is reached. The synthetic data will be bypassing the Anonymization Tool, as they do not need
anonymisation.

4.11 Pilot #13 - Alternative/automated insurance risk selection -
product recommendation for SME

The main objective of Pilot #13 is to implement a data analysis platform applying machine learning and
artificial intelligence technologies to better predict the insurance needs of SMEs. In this context, the platform
will generate a risk map of the SMEs based on their daily activities and will predict how the risk will vary on
time. Therefore, the pilot will design and implement a service that effectively monitors the current risks of
SMEs, as well as their risk variance in the future, in order to improve the control of the accident rate, the
renewal of insurance policies and offer personalised insurance cover.

To this end, real data that are obtained from a variety of open data sources such as the web, social media
profiles, official registers, opinion platforms, business directories, e-commerce platforms and more, are
leveraged. The dataset is composed of data originating from 50000 EU SMEs and has both structured and
unstructured data in image (PNG) format and text format, while the estimated data volume is expected to
be around 1 TB of data. The following table summarize the main data sources that will be exploited in the
context of Pilot #13:

Table 35: Pilot #13 List of datasets

Dataset Name Dataset description Data Format Anonymisation

SMEWIF SMEs website information and functionalities.
Description of the text contained in the
website of the companies, services and
structure of the company:
• Name, Brand Name
• Business Activity
• Phone Number, Brand Address, Website
Phone Number

AWS S3 /
Dynamo DB
(text format)

Not required (Open
data)

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 83 of 91

• Description from company
• Website
• Security Protocol
• Play Store, APP Store
• Location from website
• Nº Opinions, Average Rating
• E-Mail
• Business Hours
• Categories
• Claimed

ROPS Review and opinions platforms. Reputation
information and opinions of clients about
products and services.

AWS S3 /
Dynamo DB
(text format)

Not required (Open
data)

EUBD European SMEs Business Directories. Official
and legal information about the companies,
social object, activities, other companies
where they have equity:
• Legal Name
• Registered Address
• Address
• Court
• Last Announcements in Commercial Register
• Incorporated
• Company Type
• Age of company
• Number of employees
• SHARE CAPITAL
• SIC/NACE CODE
• VAT NUMBER

AWS S3 /
Dynamo DB
(text format)

Not required (Open
data)

GIO SMEs geolocation information and
characteristics images and geographical
information.

AWS S3 /
Dynamo DB
(text format

Not required (Open
data)

SMSIP Social media SMEs information and presence.
Evaluation and track of the channels where the
SMEs have online presence.

AWS S3 /
Dynamo DB
(text format

Not required (Open
data)

In addition to the real data, synthetic data are leveraged towards the aim of increasing the prediction
accuracy and the usability of the designed machine learning models. The synthetic data creation aims to
produce hybrid synthetic data by building models from real world data and domain knowledge and leveraging
a simulator that is driven by these models to generate synthetic data. Within the context of the pilot, either
open data or synthetic data are utilised. Hence, the need for any anonymisation process is not foreseen.

4.12 Pilot #14 - Big Data and IoT for the Agricultural Insurance
Industry

The objective of Pilot #14 is to deliver a commercial service module which will enable insurance companies
to exploit the untapped market potential of Agricultural Insurance (AgI), taking advantage of innovations in
Earth Observation (EO), weather intelligence & ICT technology. Towards this end, EO is leveraged to
implement a crucial new supplementary information source which will be utilised by insurance companies in
their products design and risk assessment processes related to nature disasters. On the other hand, weather
intelligence related to data assimilation, numerical weather prediction and ensemble seasonal forecasting

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 84 of 91

will be leveraged with the aim of effectively verifying the occurrence of catastrophic weather events, as well
as predicting predict future perils, providing crucial information to the agricultural insurance companies for
possible threats of their portfolios.

In this context, Pilot #14 mainly exploits the data produced by the satellite and the weather intelligence
engine which are complemented by anonymised in-situ data of the insured parcels that are currently used
both as input and calibration data for the existing insurance services. In detail, the following data are utilised
in Pilot #14:

Table 36: Pilot #14 List of datasets

Dataset
Category

Dataset
Name

Dataset description File
Format

Earth
Observation
data

Sentinel-2

Sentinel-2 products follow a specific naming code as described below:
S2A_MSIL2A_YYYYMMDDTHHMMSS_Nxxyy_ROOO_Txxxxx_<Product
Discriminator>
where:

• S2A or S2B = Spacecraft

• MSI = Instrument

• L2A = Processing level

• YYYYMMDDTHHMMSS = Sensing start time and sensing stop time
of the first line of granule in date UTC time format

• Nxxyy = Processing Baseline number (e.g. N0204)

• ROOO = Relative Orbit number (R001 - R143)

• Txxxxx = Tile Number field

netcdf4,
tif

Sentinel-1 The top-level Sentinel-1 product folder naming convention is composed of
upper-case alphanumeric characters separated by an underscore:
MMM_BB_TTTR_LFPP_YYYYMMDDTHHMMSS_YYYYMMDDTHHMMSS_O
OOOOO_DDDDDD_CCCC.EEEE
where:

• The Mission Identifier (MMM) denotes the satellite and will be
either S1A for the Sentinel-1A instrument or S1B for the Sentinel-
1B instrument.

• The Mode/Beam (BB) identifies the S1-S6 beams for SM products
and IW, EW and WV for products from the respective modes.

• Product Type (TTT) can be RAW, SLC, GRD or OCN.

• Resolution Class (R) can be F (Full resolution), H (High resolution)
or M (Medium resolution)

• The Processing Level (L) can be 0, 1 or 2.

• The Product Class can be Standard (S) or Annotation (A).
Annotation products are only used internally by the PDGS and are
not distributed.

• Polarisation mode (PP) can be of dual, single or partial-dual type.

• The product start and stop date and times are shown as fourteen
digits representing the date and time, separated by the character
'T'.

• The absolute orbit number at product start time (OOOOOO) will
be in the range 000001-999999.

• The mission data-take identifier (DDDDDD) will be in the range
000001-FFFFFF. The product unique identifier (CCCC) is a
hexadecimal string generated by computing CRC-16 on the
manifest file. The CRC-16 algorithm used to compute the unique
identifier is CRC-CCITT (0xFFFF).

netcdf4,
tif

Landsat-8 Following is a typical naming of a Landsat-8 product:
LXSS_LLLL_PPPRRR_YYYYMMDD_yyyymmdd_CX_TX_prod_band
where:

tif, tfw,
xml, hdf,

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 85 of 91

• L: Landsat

• X:Sensor (“O” = OLI; “T” = TIRS; “C” = OLI/TIRS)

• SS: Satellite (“08” = Landsat 8)

• LLLL: Processing correction level (“L1TP” = Precision Terrain;
“L1GT” = Systematic Terrain; “L1GS”= Systematic)

• PPP: Path

• RRR: Row

• YYYY: Year of acquisition, MM Month of acquisition, DD Day of
acquisition

• yyyy: Year of processing, mm Month of processing, dd Day of
processing

• CX: Collection number (“01”, “02”, etc.)

• TX: Collection category (“RT” = Real-Time; “T1” = Tier 1; “T2” =
Tier 2)

• prod: Product, such as “toa” or “sr”

• band: such as “band<1-11>,” “qa,” or spectral index.

hdr, nc,
or img

PROBA-V
Dry Matter
Productivit
y (DMP)

The DMP collection 300 m v1 product follows the naming standard as
follows:
c_gls_<product>[-
<RTx>]_<YYYYMMDDhhmm>_<AREA>_<SENSOR>_V<Major.Minor.Run>
where:

• <product> is the DMP300.

• <RTx> is an optional parameter. It is used whenever a real-time
product is provided:

• RT0: Near Real Time product;

• RT1 or RT2: Consolidated Real Time product (in convergence
period), where the number equals the number of times the RT0
product was successively updated;

• RT5: Final consolidated Real Time product.

• <YYYYMMDDhhmm> gives the temporal location of the file. YYYY,
MM, DD, hh, and mm denote the year, the month, the day, the
hour, and the minutes, respectively.

• <AREA> gives the spatial coverage of the file. For example, if the
<AREA> is GLOBE, then the full globe product is available.

• <SENSOR> gives the name of the sensor family used to retrieve
the product, so VGT referencing SPOT-VEGETATION, and PROBAV
for PROBA-V.

• <Major.Minor.Run> gives the version number of the product.
“Major” increases when the algorithm is updated. “Minor”
increases when bugs are fixed or when processing lines are
updated (metadata, colour quicklook, etc.). “Run” increases
whenever a new processing run (with the same major and minor
version) is performed without a change in the algorithm (e.g. due
to a change in input data). This version refers to Major = 1.

tif, tfw,
xml, hdf,
hdr, nc,
or img

Weather and
Climate Data

Numerical
weather
predictions

A typical weather product follows the naming standard as follows:
<Weather_Parameter>_<AOI>_<Year>-<Month>-<Day>-<Hour>:00:00
where:

• <Weather_Parameter> is the corresponding weather parameter
(Temperature, RH etc.)

• <AOI> is the Area of Interest

• <Year> is the corresponding year

• <Month> is the corresponding month

• <Day> is the corresponding day of the month

• <Hour> is the corresponding hour

tif, tfw,
xml, hdf,
hdr, nc,
or img

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 86 of 91

Insured
Parcels

Parcel Data In order to be ingested by the system, all the required information related
to the insured parcels are collected in a Shapefile format file reporting the
following information for each parcel:

• Parcel ID number

• Boundaries (i.e. lat/lon coordinates of the corners of the field)

• Soil texture (i.e. % sand, % clay, % silt)

• Crop type

• Size (in ha)

• Country/county/area

• Insured from (the type of the damage, the parcel is insured of)

• Insured Value

• Contract Duration

• Total insured area (in case not the entire parcel is insured)

• Total Insured value

• Expected yield (per parcel or per ha)

Shapefile
format
file

4.13 Pilot #15 – Open Inter-Banking pilot
The objective of Pilot #15 is to develop a collaborative pilot gathering requirements from several Italian banks
through its Centre of Competence on Artificial Intelligence (AI Hub). The pilot plans to deliver a Machine
Learning model that is capable of reading the internal documents of a bank, highlighting the main concepts
and allow these concepts to be traced back to reference taxonomies. Moreover, Pilot #15 aims to leverage
Machine Learning and Natural Language Understanding paradigms to meet its goals.

An operational environment has been made available as part of pilot, which contains all the data made
available by Banks.

The resources that have been collected include the following:

• Documentary collections

• Domain resources (such as dictionaries and taxonomies conceptual)

The data is stored in virtual machines running on servers managed and hosted on premises. The collected
resources will not be manipulated, but analysed in order to develop a Metadata Creation service, to unify
the conceptual description with respect to a common reference model (ABI Lab Taxonomy). The access to
the operational environment is protected by firewalls and all the documents and related metadata is
physically stored on the servers. The banks involved in the pilot have shared their documents through the
protocol Secure File Transfer Protocol (SFTP), with dedicated accounts for each of the different banks.
Regarding, the document loading procedure, each bank was provided with an account and an IP address
associated with the SFTP server hosted in the data centre and made available as part of the project. Through
a file transfer software, each bank was able to connect to the SFTP server and, through the account provided,
was able to access a dedicated folder where to upload the documents, maintaining a defined naming
convention. The use of accounts delivered individually to each bank guarantees that it is not possible to read
or write access to the folders made available to other banks, ensuring privacy and access control. In addition
to this, a data retention process was identified focusing on project needs and deadlines. In terms of volumes,
more than 600 banking documents have been collected and used for the project scope.

The following table summarizes the main data sources that will be exploited in the context of Pilot #15:

Table 37: Pilot #15 List of datasets

Dataset Name Dataset description Data Format Anonymisation

Banking
Documents

Dataset contains more than 600 internal
banking documents, from 5 banks, in different
formats (pdf, docx, etc.).

Text No anonymisation

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 87 of 91

5 Conclusions
The purpose of this deliverable entitled “D5.14 – Datasets for Algorithms Training & Evaluation - II” was to
provide the final report of the outcomes of the work performed within the context of T5.1 “Data Collection
for Algorithms Training & Evaluation” of WP5. To this end, with this deliverable, the fully functional version
of the INFINITECH Data Collection component is delivered, providing as supplementary documentation its
final design specification, the addressed use cases accompanied by the respective sequence diagrams, the
complete and final implementation details and a presentation of implemented functionalities from the
delivered component. In addition to this, the deliverable reported the results of the analysis on the
characteristics and role of the synthetic datasets, as well as their role in INFINITECH. Finally, it presented the
updated details of the datasets that are collected within the context of the pilots of INFINITECH.

At first, the deliverable provided the supplementary documentation of the INFINITECH Data Collection
building on top of the initial documentation of the previous iteration by describing the details of its scope,
the motivation for the development of the component and the challenges that it addresses. Furthermore,
the deliverable presented the high-level architecture of the component, that is composed of three main
modules, namely the Data Retrieval, the Data Mapper and the Data Cleaner. For each module, the complete
design specifications were presented focusing on their main functionalities. The deliverable presented the
use cases that each module addresses along with the relevant sequence diagrams that depict the interactions
between the module and the stakeholders of INFINITECH. The deliverable presented also the detailed
documentation of the implementation aspects of the component by presenting the complete list of functions
and services per module which were implemented following the aforementioned design specifications along
with the source code structure via UML diagrams. Finally, the delivered fully functional version of the
component was presented by providing a walkthrough of the delivered functionalities from the user’s
perspective.

Following the INFINITECH Data Collection documentation, the results of the in-depth analysis of the synthetic
datasets were presented. To this end, the analysis provided the advantages and limitations of the synthetic
datasets were presented along with their categorisation into three main categories. In addition to this,
through the analysis the overview of most common approaches that are followed during the synthetic data
generation process were elaborated together the list of state-of-the-art tools and frameworks that are
utilised within this process. The analysis providing useful insights on the motivation and use cases for which
the synthetic datasets are leveraged within the context of INFINITECH project, as well as the list of synthetic
datasets which are used by the INFINITECH pilots. It should be noted that the results remained unchanged
from the previous iteration of the deliverable and they were reported for coherency reasons.

Finally, the deliverable presented the final list of datasets, real and synthetic, that are exploited by the
INFINITECH pilots. For each pilot, an overview of the implemented data collection process was documented
along with the final list of datasets that each pilot utilises to realise the aspired scenarios. In detail, for each
dataset the description of the information included was elaborated along with the format of each dataset
and the needs for anonymisation in order to cope with the data privacy requirements.

The deliverable constitutes the final report of the outcomes and the work performed within the context of
T5.1. It documented all the activities performed from M18 till M27 by extending and updating the previously
elaborated outcomes documented in deliverable D5.13 on M17. The updates introduced were the results of
the analysis performed on the new requirements that have been identified during this second period as well
as on the feedback that was collected by the pilots of the project and the stakeholders of the platform. The
deliverable at hand concludes the activities of Task 5.1.

Table 38 - Conclusions (TASK Objectives with Deliverable achievements)

Objectives Comment

Enable the exploitation of the
variety of finance and insurance
sector data sources.

The proposed solution successfully enables the collection of
information from the variety of data sources that are exploited in the
finance and insurance sector. It facilitates the effortless and efficient

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 88 of 91

data collection, data mapping and data cleaning towards the
ingestion of the information in the underlying storage in order to be
further processed and exploited by the INFINITECH Machine Learning
services.

Provide the mechanism that
addresses the various connectivity
and communication challenges of
the complete data collection
process

The INFINITECH Data Collection delivers the required abstract and
holistic mechanism for the data providers of INFINITECH to effectively
and efficiently collect, map into a data model and clean the required
information from a large variety of data sources. Furthermore,
through its microservice-based architecture it provides the means for
further expansion of the supported data sources upon needs.

Design and deliver the required
solution that enables the
connection and retrieval of the
information for different data
sources

The detailed design specifications, as well as the final and fully
functional release, of the INFINITECH Data Collection, are delivered
with the current deliverable. The designed functionalities successfully
the needs of the INFINITECH data provider to connect and retrieve
information from a data source. The implementation of the
INFINITECH Data Collection based on the designed specifications has
been completed.

Table 39: Conclusions – (map TASK KPI with Deliverable achievements)

KPI Comment

Data Collection mechanism
available for enabling the
collection and ingestion of data in
an INFINITECH testbed

Target Value = 1

The specific KPI is successfully achieved with the presented solution,
namely the INFINITECH Data Collection, whose final version was
released in the current deliverable, accompanied by the detailed
design specifications which were also documented.

Coverage of different data source
types

Target Value = 6

Per the design specifications documented in the current deliverable,
the INFINITECH Data Collection is capable of:

• Retrieving new information from an API

• Receiving new information from its exposed API

• Fetching files from an FTP or HTTP server

• Retrieve new information from a Relational Database

• Retrieve new information from a HDFS deployment

• Retrieve new information from a MinIO storage server

Number of services exposed to the
clients of the INFINITECH Data
Collection.

Target Value >= 3

The INFINITECH Data Collection exposes three main services:

a) the Data Retrieval service,
b) the Data Mapper service,
c) the Data Cleaner service

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 89 of 91

Appendix A: Literature

[1] M. J. T. D.-M. J. B. S. A. M. N. T. M. I. .. &. D.-L.-H.-V. E. Naeem, “Trends and Future Perspective
Challenges in Big Data. In Advances in Intelligent Data Analysis and Applications,” in Springer,
Singapore, 2021.

[2] H. Surendra and H. Mohan, “A review of synthetic data generation methods for privacy preserving data
publishing,” International Journal of Scientific & Technology Research, vol. 6, no. 3, pp. 95-101, 2017.

[3] A. Z. R. a. B. S. Dandekar, “Comparative evaluation of synthetic data generation methods,” in ACM
Conference (Deep Learning Security Workshop), 2017.

[4] V. Ayala-Rivera, P. McDonagh, T. Cerqueus and L. Murphy, “Synthetic Data Generation using Benerator
Tool,” University College Dublin, 2013.

[5] S. Assefa, D. Dervovic, M. Mahfouz, T. Balch, P. Reddy and M. Veloso, “Generating synthetic data in
finance: opportunities, challenges and pitfalls,” JPMorgan Chase & Co, 2020.

[6] “FIWARE Vehicle Data model,” [Online]. Available: https://fiware-
datamodels.readthedocs.io/en/latest/Transportation/Vehicle/Vehicle/doc/spec/index.html.

[7] “FIWARE Alert Data Model,” [Online]. Available: https://fiware-
datamodels.readthedocs.io/en/latest/Alert/doc/spec/index.html.

[8] “FIWARE Weather Observed Data model,” [Online]. Available: https://fiware-
datamodels.readthedocs.io/en/latest/Weather/WeatherObserved/doc/spec/index.html.

[9] “ETSI NGSI-LD specification,” [Online]. Available:
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf.

[10] “FIWARE,” [Online]. Available: https://www.fiware.org/developers/.

[11] “NGSI specifications,” [Online]. Available: http://fiware.github.io/specifications/ngsiv2/stable/.

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 90 of 91

Appendix B: INFINITECH List of synthetic datasets

Pilot

Provi
der

Dataset Name Short Description
Dataset
Type

Dataset
Format

Dataset
Volume

Synthetic
Data
Category

Synthetic Data
Methodology / Strategy

Library,
Framework,
Tool utilised

P4 PRIVE Risk metrics
figures

Portfolio data is used to
calcultae portfolio metrics like
portfolio performance,
volatility, sharpe ratio and
other risk figures

Numeric CSV or
customis
ed

Depends
on
customer
use cases

Hybrid
synthetic

The historical price data is
taken to calculate the
performance. Historical price
is used to calculate historical
portfolio backtesting and
portfolio risk-metrics such as
volatility/standard deviation,
sharpe ratio, return, max
drawdown.

Prive
Managers
Platform

P5b UPRC
-BOC

Surrogate Data Surrrogate data created based
on Iterated Amplitude
Adjusted Fourier-Transformed
IAAFT in order to enhance the
time-series historical
transactions dataset used for
the Cash-Flow prediction
service.

Numeric/
time-
series

CSV Depends
on the
scenario
executio
n

Partially
synthetic

The data has been created
based on Iterated Amplitude
Adjusted Fourier-Transformed
IAAFT and historical time-
series transactions

IAAFT

P10 PI Financial
transactions
data

Synthetic real time dataset
related to financial
transactions of the following:

STFTF, PCTU, Bank Transfer
SEPA , Foreign Bank Transfers,
Internal Transfer of funds,
SMWCA

Text /
Numeric

CSV 3.5GB
per Year

Fully
Synthetic

Build models from real world
data and domain knowledge.
The data will be synthetized
using a set of generators
which will be based on a
lightweight agent-based
modelling framework while
using inferred distribution.

Python
Libraries

P11

ATOS Connected Car
dataset
(FIWARE NGSI
Vehicle data
models)

Real time dataset related to
connected vehicles (location,
status, speed, acceleration,
fuel consumption, etc.)
driving within selected
scenario

FIWARE
NGSI
Vehicle
extended
data
model

JSON

~10MB
per
simulatio
n

Fully
Synthetic

Datasets extracted from Real
time simulation. Historical
datasets would be also
generated

Atos SUMO 2
NGSI

D5.14 – Datasets for Algorithms Training & Evaluation - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 91 of 91

P11

ATOS Traffic Dataset
(FIWARE NGSI
Road &
RoadSegment
data models)

Real time datasets related to
traffic (road occupation,
traffic status, etc.) referred to
the cities included in out
SUMO-Based simulation tool
(Cologne, Luxemburg,
Monaco)

FIWARE
NGSI
Road and
RoadSeg
ment
extended
data
models

JSON

~10MB
per
simulatio
n

Partially
Synthetic

Datasets extracted from Real
time simulation. Historical
datasets would be also
generated

Atos SUMO 2
NGSI

P12 iSprin
t

Healthentia
Simulated

Activity tracking data (steps,
sleep etc.) and reported data
regarding nutrition, health
and quality of life self-
assessments

Numeric
al Data

JSON Depends
on the
scenario
executio
n

Fully
Synthetic

Build models from real world
data and domain knowledge.
Use a simulator driven by the
models to generate synthetic
data

Python
Libraries

P13 WEA SMEs synthetic
raw data

SMEs raw data to complete
the model and algorithm

Text

JSON 120 Kb
per
target/co
mpany

Hybrid
Synthetic

Build models from real world
data and domain knowledge.
Use a simulator driven by the
models to generate synthetic
data

Python
Libraries

P14 AGRO Crop
Biophysical
Parameters

Crop Biophysical Parameters
that will be used from crop
health and crop productivity
assessment. Typical examples
of these parameters are
Biomass, Chlorophyll content,
Leaf Area Index and Yield.

Raster GeoJSON
/ NETCDF

Depends
on the
size of
the Pilot
area

Partially
Synthetic

Datasets are produced using
ESA SNAP ANN

AgroApps
OCTAPUSH/
Weather
Intelligence
Engine

P14 AGRO Crop Loss Crop loss assessment after an
insured peril

Raster GeoJSON
/ NETCDF

Depends
on the
size of
the Pilot
area

Partially
Synthetic

Datasets are produced using
AGROAPPS Ensemble EO
change detection
methodology and machine
learning methodology for
translating damages to actual
crop losses

AgroApps
OCTAPUSH/
Weather
Intelligence
Engine

P14 AGRO Seasonal Crop
Yield Prediction

Crop Yield Climatology and
Seasonal Crop Yield Prediction

Raster GeoJSON
/ NETCDF

Depends
on the
size of
the Pilot
area

Partially
Synthetic

Datasets will be produced by
using the GECROS crop
simulation model

AgroApps
OCTAPUSH/
Weather
Intelligence
Engine

