
Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D5.5 – Framework for Declarative and
Configurable Analytics - II

Title D5.5 - Framework for Declarative and Configurable Analytics - II

Revision Number 3.0

Task reference T5.3

Lead Beneficiary LXS

Responsible Pavlos Kranas

Partners CTAG LXS

Deliverable Type Report

Dissemination Level PU

Due Date 2021-07-31 [M22]

Delivered Date 2021-07-23

Internal Reviewers UNP RRD

Quality Assurance INNOV

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s horizon
2020 research and innovation programme under Grant Agreement
no 856632

Ref. Ares(2021)4731467 - 23/07/2021

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 33

Contributing Partners

Partner Acronym Role1 Name Surname2

LXS Lead Beneficiary Ricardo Jiménez-Peris

LXS Contributor Francisco Ballesteros

Boyan Kolev,

Javier Pereira,

Patricio Martinez,

Jacob Roldan,

Rogelio Rodriguez,

José María Zaragoza

Alejandro Ramiro

Pavlos Kranas

CTAG Contributor Andrea Becerra García

UNP Internal Reviewer João Oliveira

RRD Internal Reviewer Stephanie Jansen - Kosterink

INNOV Quality Assurance Dimitris Drakoulis

Revision History

Version Date Partner(s) Description

0.1 2021-07-12 LXS ToC Version

0.2 2021-07-13 LXS, GRAD Adding section 5

0.3 2021-07-13 LXS Refine the whole document

1.0 2021-07-13 LXS Submitted for internal review

1.1 2021-07-15 UNP Internal Review

1.2 2021-07-15 RRD Internal Review

2.0 2021-07-21 LXS Submitted for internal QA

2.1 2021-07-21 INNOV QA

3.0 2021-07-22 LXS Final submission

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 33

Executive Summary
The goal of Task T5.3 “Declarative Real-Time Data Analytics” is to provide a framework that can be
considered as the enabler for real-time (online) data analytics over the data management layer of
INFINITECH, in a declarative way, hiding the complexities of the implementation on the framework
itself. Typical scenarios in both finance and insurance sectors require the continuous ingestion of
data coming from a variety of sources at high rates, while at the same time they require the ability to
perform complex and time-demanding analytical operations over the operational dataset, as the
data is being inserted. Due to the current technological obstacles of combining those two different
types of workloads, complex architectures are usually proposed and integrated into the current
enterprise applications that allow performing such analytical operations. However, these analytical
operations are performed over a snapshot of a database that is outdated, and not on real-time data.
Those architectures are on one hand hard to implement, and additionally very difficult to maintain
due to their complexity.

The INFINITECH project aims to provide an innovative data management platform that overcomes
the current technological barriers throughout the data lifecycle, from data collection and ingestion,
to analytical processing. The outcomes of this task will be part of the Advanced Analytical Processing
layer of the platform and are built on top of the fundamental pillars implemented in the work that
has been carried out in the corresponding tasks of WP3, which provides the enablers for these
advanced analytics. As a result, the Declarative Real-Time Analytics will support the declaration,
configuration and execution of analytical queries over an operational datastore, and will be able to
return the result of those analytics in real-time, or as we better call it, online. This is a key
requirement for the acceleration of the parallelized algorithms and will additionally benefit the
correlation of data at-rest with data in-flight, used in the streaming processing framework of
INFINITECH. As the results can be retrieved online, they are acquired with minimum latency as
opposed to traditional executions of analytic operations, and the results are always up-to-date with
the operational data. We extend the vanilla data structure of our data schema with the addition of
new analytical columns that aim to facilitate the query execution, thus facilitating the analytical
algorithms to retrieve post-processing results by directly connecting to the operational data store,
instead of using complex and hard to maintain alternative architectures. Therefore, we introduce the
term online aggregates to refer to data analytics over real-time data, where the requirement is to
retrieve results with the minimum latency possible, while ensuring data consistency at the same
time. The execution of those online aggregates has been designed to be declarative, as they can be
defined and configured via SQL DDL statements and their execution relies on the standard SQL
syntax.

This deliverable introduces the online aggregates and describes the general concepts and design
principles behind their implementation. It provides examples explaining the problem statement and
the motivation behind them. At this phase of the project, we first provided the initial design of this
framework, which is based on the semantic multi-version concurrency control implementation of
the central data repository of the project. The design of this prototype along with an initial
implementation had been already delivered in the first phase of the project, integrating the core
mechanism of this component with the query engine of the central data repository, whose
improvements and features have been already described in the corresponding deliverables of T3.1
and T3.2. This integration allowed the support of the definition of the online aggregates in a
declarative way, using standard SQL syntax and delegating their execution to the query engine of the
data management layer. As a result, significant effort has been put into the design of the SQL
extensions and the documentation on how to use the real-time analytics. This documentation has
been provided in deliverable, to allow the developers of the analytical algorithms of the pilot cases
to utilise them. At the end of the second phase of the project, the integration with the query engine
has been delivered, and thus, more advanced features and a combination of aggregate operations
can be now supported and are described in the corresponding additional section of this deliverable.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 33

In this second version, we give more technical information regarding the execution of such
statements by the query, along with initial benchmarking results, comparing our implementation
against the traditional use of such statements. The third and final version of this document will
provide the complete documentation of this framework, along with its validation using
experimentation and use cases demonstrating its use.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 33

Table of Contents
 ..

Contributing Partners ... 2

Revision History .. 2

Executive Summary ... 3

Table of Contents .. 5

Abbreviations .. 6

1. Introduction .. 7

1.1. Objective of the Deliverable ... 8

1.2. Insights from other Tasks and Deliverables .. 8

1.3. Updates from the previous version (D5.4) ... 8

1.4. Structure ... 9

2. Motivation and Design Principles of Online Aggregates... 10

2.1 A BigData application scenario as a reference example ... 10

2.2 Introducing Aggregate Tables ... 11

2.3 Problems Using Aggregate Tables with Traditional Approaches .. 11

2.4 Our solution: Online Aggregates ... 13

3. Using Declarative SQL to enable Real-Time Data Analytics .. 15

4. Real-Time Data Analytics in practice using the direct API .. 18

4.1 Setting up the application ... 18

4.2 Implementing the application using online aggregates .. 19

5. Real-Time Data Analytics in practice using SQL syntax ... 24

5.1 Online Aggregates in Real-Time Risk Assessment .. 24

5.2 Deploying Online Aggregates with INFINISTORE .. 25

5.3 Declaring the Online Aggregates .. 27

5.4 Using Online Aggregates with standard SQL statements ... 28

6. Conclusions and next steps ... 32

7. References .. 33

List of Figures

Figure 1: Online Aggregates Data Structures .. 29

Figure 2: SQL Aggregation Query Statement .. 29

Figure 3: Asking for the query plan of the online aggregate .. 30

Figure 4: Query plan for vanilla datastore .. 31

Figure 5: Query plan using online aggregates ... 31

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 33

List of Tables

Table 1: Example of sample rows in a table containing transactions ... 10

Table 2: Aggregate table containing a summary of transactions ... 11

Table 3: Table containing information from a visitor's cookies .. 19

Abbreviations

2PL Two-phase Commit protocol

AI Artificial Intelligence

API Application Programming Interface

BI Business Intelligence

CSV Comma-separated values

CTS Commit Timestamp

DDL Data Definition Language

ETL Extract, Transform, Load

HTAP Hybrid Transactional and Analytical Processing

IoT Internet of Things

JDBC Java DataBase Connection

KPI Key Performance Indicator

NoSQL No/Not only SQL

OLAP Online Analytical Processing

OLTP Online Transactional Processing

SQL Structured Query Language

WP Work Package

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 33

1. Introduction
The term real-time analytics refers to the ability of the framework or the architecture to provide
analytical processing capabilities over the live-data, and not over a snapshot of the dataset that has
been taken either by a periodically executed process (i.e. using ETLs) or via the data migration from
the operational datastore (where the real data lives) to a data lake or an analytical data warehouse
via micro batching using intermediate data queues.

Typically, real-time analytics are very hard to achieve as a major requirement is the ability to ingest
data at very high rates, while at the same time, compute large aggregate queries over the real-time
data.

This scenario is often a common use case in BigData applications where data is being ingested at
high rates and the analytical algorithms need to compute KPIs or other metrics over the real or live
data, as it has been ingested. Such use cases can be found in the area of performance monitoring, in
cases where there is the need to calculate aggregated values of IoT sensors, e-Advertisements, ,
smart grids, industry 4.0, online detection of opportunities of risk assessment or other applications
in the finance sector like online fraud or anti-money laundering detection, etc.

As data need to be stored in a persistent medium, data store solutions coming both from the SQL or
NoSQL ecosystems seem to be inadequate to perform such operations.

In particular, SQL databases find this kind of workload troublesome, as they are not efficient at
ingesting data at very high rates, and in the meantime, aggregate analytical queries are very
expensive, as they require to traverse very large amounts of data, and in many cases, the whole data
table, very frequently. This, in combination with the fact that traditional approaches rely on the 2PL
(two-phase locking) mechanism for ensuring transactional consistency, makes it impossible for them
to execute analytical query operations on the operational and real-time data.

On the other hand, NoSQL databases can handle the data ingestion at high rates, thus being
effective on serving this type of workload. However, they cannot be used to execute analytical
queries, and in many cases they rely on external analytical frameworks to provide this type of
functionality to the data user. They cannot be used in scenarios where operational guarantees in
terms of transactional semantics are required, and they lack support of transactions.

As a result, modern approaches in the industry rely on solutions that need to combine different data
management technologies to solve these use cases. This yields complex architectures that are very
hard to be implemented successfully, and in any case, they are also very expensive to maintain.

The INFINITECH platform differentiates from those approaches by providing a framework for online
data analytics, in a declarative manner, which is introduced in this report. We call this differential
feature as online aggregates, a new technology that is being developed in the scope of this task,
which is based on the brand new semantic multi-version concurrency control mechanism and
enables the computation of aggregates (i.e. max, min, count, sum and average) in an incremental
and real-time manner, using additional data structures in the storage engine. This creates new
analytical columns that can be used by analytical algorithms. The latter can be facilitated by
seamlessly using those columns while directly connecting to the data management layer of the
platform.

The specific benefit the online aggregates offer is to enable the update of the relevant aggregate
tables, as data is being ingested, so aggregates are always pre-computed and the values can be
retrieved online without the need to traverse the whole data table, an operation that has significant
implications on the latency. Thus, a typically large and expensive analytical aggregate query becomes
an almost costless query that reads one or few rows of those introduced aggregate tables that
contain the analytical columns. With our approach, data ingestion becomes slightly more expensive
in terms of latency, however, the implementation of the Online Transactional Processing (OLTP)
engine of the INFINITECH data management layer, as described in D3.1 (“Hybrid

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 33

Transactional/Analytics Processing for Finance and Insurance Applications –I”), enables the sufficient
execution and can handle very high throughputs. The slightly more expensive data ingestion
removes the cost of computing the aggregates in real-time.

In this report, we introduce the concept of online aggregates, showcasing how both a traditional SQL
database and a NoSQL datastore fail to solve the problem, and we explain how this new technology
developed in the scope of the INFINITECH project, succeeds at providing these advanced analytical
capabilities. We also demonstrate how to use this feature by providing documentation with
examples.

1.1. Objective of the Deliverable

The objective of this deliverable is to report the work that has been done in the context of task T5.3,
at this phase of the project (M22). A final version of this document will be released, extending and
modifying when necessary the content of this deliverable. The work that has been currently
delivered during the first and second phases of this task (M06-M22) was focused on the
implementation of the brand new semantic multi-version concurrency control mechanism of the
storage engine and its integration with the data management layer, in order to facilitate the
provision of the online aggregates, that formulates the real-time analytics. In this second version of
the report we have achieved the integration with the INFINISTORE both at the storage layer and its
relational query engine. In this deliverable, we report the rationale and motivation along with our
approach and the design principles of our implementation. Additionally, documentation on how to
use this mechanism in a declarative manner has been added, using both the storage’s direct API and
the query engine. We validated the latter by integrating our solution with a running pilot of
INFINITECH that relies its solution on the innovation that has brought as the outcome of this task.

1.2. Insights from other Tasks and Deliverables

The work that has been carried out in the scope of T5.3 (“Declarative Real-Time Data Analytics”) has
relied on the outcomes of the tasks of WP2 that define the overall user stories and requirements of
the use cases of INFINITECH and has been aligned with the INFINITECH RA that was previously
introduced in D2.13 (“INFINITECH Reference Architecture – I”), under the scope of T2.7 (“Reference
Architecture for BigData, AI and IoT in Financial Services Industry”). Apart from this, it relies on the
outcomes of T3.1 (“Framework for Seamless Data Management and HTAP”), which implements the
Hybrid Transactional and Analytical Processing (HTAP) framework that allows on the one hand for
data ingestion at very high rates, and on the other hand, the combination of operational with
analytical operations. The output of this task will be also beneficial to T3.3 (“Integrated Querying of
Streaming Data and Data at Rest”) that implements the unified data query processing framework,
which in turn allows the correlation streaming with batch processing. In particular, the provision of
real-time analytics via the online aggregates can be used in query processing, as it allows for the
execution of analytical operations in real-time, with the minimum latency possible. Finally, this task
also gives input to T5.2 (“Incremental and Parallel Data Analytics”), as the latter depends on real-
time analytics for the effective parallelization of its algorithms.

1.3. Updates from the previous version (D5.4)

In this version of this report we have added section 5, which demonstrates the use of the online
aggregates in a declarative manner and we have validated by using a live scenario from pilot#2
(“Real-time risk assessment in Investment Banking”). In more details, we demonstrate how to
configure and deploy the framework, which is now an internal part of the INFINISTORE and how to
setup the other components of the integrated solution of the pilot to simulate a real scenario. Then,

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 33

we will show how to configure the online aggregates and finally we show the performance
acceleration when using a vanilla installation of the INFINISTORE and one with the online
aggregates. To make things clearer to the reader, we finally provide insights on how the query
engine of the INFINISTORE works internally, in order for the reader to understand how this
performance acceleration is gained.

1.4. Structure

This document is structured as follows: Section 1 introduces the document and section 2 provides
the rationale and motivation of the Declarative Real-Time Analytical framework, including the
problem stating and introducing the notion of online aggregates that this framework is based upon.
Section 3 provides the documentation of this framework, while section 4 includes a hands-on
demonstrator on how to use online aggregates in an application, providing code examples as
guidelines for the application developers and data scientists. This second version of the report
additionally includes section 5, which demonstrates the use of the online aggregates in a declarative
manner, both for their initial configuration that requires an extended SQL DDL syntax, and for the
run time execution that requires the submission of standard SQL statements. In this particular
section, we validate our solution using pilot#2 (“Real-time risk assessment in Investment Banking”)
of the project and how we were able to improve the overall query execution time by several
magnitudes of time. Finally, section 6 concludes the document.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 33

2. Motivation and Design Principles of Online Aggregates
This section describes the motivation and the design principles of the online aggregates. We
describe a use case that is common in BigData applications in the finance sector, and we describe
the fundamental pillar of our design: the aggregate table. After investigating why our approach is
not feasible in traditional solutions relying either on relational SQL databases or NoSQL datastores,
we explain the basic concepts of the online aggregates that make use of our semantic concurrency
control mechanism and how our design solves the problems arising with other approaches and
respect the Snapshot Isolation paradigm that our transaction processing mechanism follows.

2.1 A BigData application scenario as a reference example

BigData applications often require the support of data ingestion at high rates, where data can be
collected from a variety of sources. Such sources can vary from data produced by IoT sensors
installed in the soil or a vehicle and transmitted to an insurance organization, to the financial
transactions of customers of a financial institution, records containing meta-information of a phone
call collected by a telecom provider or data containing application metrics that is being acquired by a
cloud provider in order to detect anomalies in the application behaviour for application performance
monitoring.

For a financial institution, it might be crucial to monitor the maximum and average amount of
money being used in a financial transaction in order to detect anomalies that might indicate fraud
detection or money laundry operation from a client. Detecting those anomalies requires tracking the
regular customer behaviour. Typically, this regular behaviour is modelled by several metrics: the
maximum amount of money transferred in a single transaction, the average amount, the number of
money transfers every given period of time and the overall amount being transferred. Additionally,
there is a need to monitor and calculate these metrics at different aggregation levels: per customer,
per region/area, per month etc.

In this example, we will describe how to compute this aggregation hierarchy in real-time,
equivalently in terms of data consistency and in a cost effective way. Let’s assume that there is a
data table where each transaction of a client is being recorded. We will focus on two columns of that
table, the name that identifies the client and the amount of money being transferred in a financial
transaction. For instance, some sample rows of this table are illustrated in Table 1 below:

Table 1: Example of sample rows in a table containing transactions

Name Value

Aleka 500

Pedro 250

José Maria 125

Aleka 200

Ricardo 480

Aleka 150

Ricardo 220

Large finance organizations like national banks or other similar institutions with millions of
customers having different accounts have to keep track of all transactions that are being currently
processed in their organizations. Depending on the size of the institutions, this might end up in the

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 33

ingestion of hundreds of thousands of records per second. As the bank might have millions of
customers to keep track of, and for each one of them, it is required to keep track of the
aforementioned different types of aggregations, the execution of each of those operations for each
of its customers would be required, in a per-minute basis (or even less in case of money laundry and
fraud detection cases). As each of those operations requires the traverse of the majority of the data
table, this is very resource demanding from the database management system perspective.

2.2 Introducing Aggregate Tables

In order to reduce the cost of each particular aggregate operation and the overall cost of the
analytical queries, one solution could be to compute those aggregations incrementally in a separate
structure, whose values can be retrieved more efficiently. We call those structures aggregate tables.
As a result, we could have an aggregate table per aggregation level. In our example, we could have
one table containing the customer’s summary amount of money transferred, the customer’s
maximum amount, etc. In real use cases, however, more aggregation levels might be needed for
different periods and different aggregation levels. For instance, the financial institution might be
interested to retrieve the average amount of money being transferred per customer and per month
or day of the week, etc.

Sticking to our example, this aggregate table that contains the customer’s summary amount of
money transferred can be depicted in Table 2. This table has as key the name that identifies the
customer. Then, every time a customer is performing a financial transaction, a new data item is
being added in the structure depicted in Table 1, as part of the same database transaction, and the
corresponding value in Table 2 is being updated according to its key. In the aggregate table, we
would update the row with the associated name, updating the value by adding in the summary the
new value. This will need to occur in each data insertion of the first table.

Table 2: Aggregate table containing a summary of transactions

Name Value

Aleka 850

Pedro 250

José Maria 125

Ricardo 700

2.3 Problems Using Aggregate Tables with Traditional Approaches

As described above, our approach for solving the problem of cost-efficient execution of a real-time
analytic operation, while data is being ingested at high rates, is based on the definition and use of
the aggregate table. However, traditional datastore vendors still cannot benefit from such a data
structure, for different reasons. This concerns both SQL databases and NoSQL data management
systems. We will present why this is happening for both these two different datastore ecosystems.

We will first examine the NoSQL world. What happens if we implement the aggregate tables based
on a NoSQL data store? Let’s consider that we have two concurrent invocations over the same row
in the aggregate table, for instance, the one that can be identified by the value ‘Aleka’. It is
important to mention here that in real life scenarios deployed in production, it might be the case
that millions of concurrent transactions might be inserting data over the same identifier, and as a
result, trying to update the same row of the aggregate table. As NoSQL data store does not ensure
data consistency in terms of database transaction semantics, in our example, both concurrent

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 33

invocations will be allowed to proceed. However, this will create the effect that one of them will be
lost in what is called the “Lost Updates” anomaly[1]. This is due to the fact that in order to update
the aggregate row for the name ‘Aleka’, the process will first need to execute a get operation, using
the ‘Aleka’ value as the key, retrieve the current value, and then execute a put operation with the
same value as the key, and the aggregated value incremented with the corresponding value of the
money that has been transferred.

To concretize our example, let’s get back to the aggregate table of Table 2. Aleka has a summarized
amount of money transferred with a value of 850. Now, two concurrent invocations appear for
Aleka, with the amount of money transferred set to 150 and 200 respectively. As we are using a
NoSQL datastore that does not ensure data consistency in terms of database transactions, both are
allowed to be executed. As we explained, this will require each one of the two to perform a get
operation, so that the current value 850 can be retrieved. The first invocation will have to calculate
the accumulated value incremented by 150, and the second will increment this value by 200. This
means that the first invocation will have to put the aggregate value of 1000 and the second one, the
aggregate value of 1050. As both of them are being processed in parallel, let’s assume that the
second succeeds first, and thus updates the value in the aggregate table to 1050. Then eventually,
the first invocation succeeds and updates the value to 1000. Now, the value of this aggregate row
for ‘Aleka’ as the key, contains the value of 1000, instead of 1200, which is the accumulated
summary of 850+150+200. This is caused due to what is called a race condition where two
concurrent operations that share the same state (i.e. the value of the accumulated value 850 in the
beginning) changes the value of the state in parallel and write it to the persistent storage. As a
result, the second write operation erased the effect and the value of the first one. As put operations
are blind writes, they do not take into account the value that was written before and just overwrite
the latter.

This problem can be removed by using a traditional SQL database, which provides transaction
semantics and ensures data consistency when concurrent invocations operate over the same data
items. This happens using a multi-statement transaction, where an insert operation takes place on
the table depicted in Table 1, and then an update operation modifies the value of the aggregate
table. Concurrent transactions over the same data item (the aggregated row of Aleka) are managed
by the transaction processing mechanisms of the database, and one has to be blocked until the
successful commit of the other. The following pseudo-code can be used to describe such a
transaction.

INSERT INTO Transactions (Name, Value) VALUES ('Aleka', 150)

DOUBLE currentvalue = SELECT FROM Aggregates WHERE Name = 'Aleka'

UPDATE Aggregates SET Value=currentvalue+150 WHERE Name='Aleka'

COMMIT

In this code snippet, the multi-statement transaction adds a new record in the first table with the
value of 150 as the transfer, and then it reads the current value of the aggregate table for the
corresponding table and updates its value accordingly, before commit. As the SQL databases use
transactional concurrency control imposed by their transactional processing mechanism, the “Lost
Updates” anomaly disappears. However, one has to take into account that there are two different
families of implementations of the transactional concurrency control: locking used by the 2PL (two-
phase locking) algorithms and multi-version, used by implementations relying on the Snapshot
Isolation paradigm. Even if they are very different, both families are introducing an inherent
contention problem. For instance, the transactional concurrency control forbids two concurrent
transactions to modify the same row. This happens by allowing only one transaction to succeed and
aborting (by a rollback) all other concurrent transactions that try to update the same data item. In
our example, only the first database transaction that will try to eventually commit will succeed, and
the second one will be aborted. This might probably be handled by the application by retry the

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 33

insertion. In real use cases where hundreds or even thousands of concurrent transactions compete
with each other to update a common data item, this will lead to a huge contention problem, no
matter which implementation of the concurrency control algorithm the database vendor is making
use of. In fact, relying on transactions to ensure data consistency and to remove the “Lost Updates”
anomaly, will make our aggregate table proposition useless in use cases targeting Big Data needs.

2.4 Our solution: Online Aggregates

In order to solve this problem, we introduce at this phase the online aggregates. They are solving the
problem with a new technology that is based on a novel semantic multi-version concurrency control
provided by LeanXcale that has been currently integrated with the INFINITECH central data
management layer. Relying on this new concurrency control, writes are not blind anymore. They
actually carry the operation performed (i.e. sum(150) or sum(200) in our example). Since additions
are commutative, they do not create write-write conflicts, as far as one keeps track that they are
additions until the corresponding version of the row is written. Taking into account that this
mechanism is built upon the operational mechanism of LeanXcale, integrated with the INFINITECH
data management layer, this mechanism is making use of the Snapshot Isolation paradigm. As a
result, in order to attain data consistency concerning this paradigm, we have implemented the multi-
versioning algorithm in a sophisticated way. The underlying distributed storage layer is now able to
support a new kind of data structure, using aggregate columns (we often call them delta columns),
which adopt this new semantic multi-version concurrency control and enable online aggregates. This
can be also combined with the HTAP capabilities implemented under the scope of T3.1 which allows
for online aggregates under data ingestion at high rates, due to the capabilities of the HTAP
framework to scale linearly in hundreds of nodes, which in practice, makes it possible to serve
incoming workload independently of its rate.

In order to dive deeper into how the online aggregates work, one has to remember that the
aggregate columns are conflict-less, and thus, they do not create write-write conflicts. As a result,
we can have two different kinds of rows: regular rows (often called value rows), which are rows that
contain values as in any traditional database management system, and operation rows (often called
delta rows) that represent operations to be performed over the columns of the rows. In our previous
example, these rows will have values sum(150), sum(200) etc. Regular rows create conflicts, as any
regular row in a traditional database management system, however delta rows do not, as they are
conflict-less. However, since they do not create conflicts the key problem that arises is that there
might be gaps in the commit order, as concurrent transactions cannot commit in an ordered
manner, so there might be gaps in that commit order, and in fact, it will not be possible to generate
the accumulated value for each delta, at the time a transaction, with an operational row, is
committed.

To further clarify this issue, let’s go back to our previous example. As we rely on the Snapshot
Isolation paradigm, each transaction is being given a timestamp. More information on how this
works can be found in section 2.3 of the D3.1. In our example, we assume that the transaction that
needs to add the value 150 is called t1, and the one that needs to add the value 200 is called t2. Let’s
assume that t2 commits first and t1 commits second. As opposed to the multi-version concurrency
control mechanism, in order to provide different snapshots of the data set, each row is being
labelled with a commit timestamp (CTS), which is a numeric value that is being increased
monotonically and determines the order of the commit. In our example, as t1 commits second, it
gets a CTS=2 and t2 gets a CTS=1. If a new transaction t3 is started after the commit of t1 and before
the commit of t2, it would get a snapshot of 0, in order to guarantee that it will not observe any gap
in the commit order. If it would get the snapshot at timestamp 2, it would miss the updates from the
transaction with CTS 1, which would violate the Snapshot Isolation.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 33

With our design, we solve the problem by converting operation (delta) rows into value rows only
when the snapshot of the database is beyond the commit timestamp of the operation rows. This
guarantees that the serialization order is gap free and therefore the generated versions are
guaranteed to be consistent and according to the semantics of snapshot isolation. In the previous
example, Table 2 contains a row (Aleka, 850, CTS=0). When the snapshot of the database reaches
timestamp 1, then the operation row from t2 adding 200 will be converted into a value row
generating the value row (Aleka, 200, CTS=1). When the snapshot reaches timestamp 2, then the
operation row from t1 adding 150 is applied to the latest value row (the one generated by t2),
yielding the following value row: (Aleka, 350, CTS=2). In this way, all the versions needed by the
different snapshots are generated consistently, thus fulfilling the snapshot isolation semantics.

To conclude, we demonstrated how the proposed online aggregates can be used in order to return
the online accumulated value of an aggregate operation, by enforcing data consistency and
transactional semantics, removing the “Lost Updates” anomaly and avoiding the high contention
that can be observed when using the same technique with traditional operational SQL database
management systems. As a result and in combination with the HTAP framework developed under
T3.1, they can be used to provide real-time analytics. At the first phase of the project, the initial
design had been validated and we had provided a first implementation of our solution. The next
section of this document reports on the use of this functionality, focusing on how this can be
invoked in a declarative fashion. In the current version of the deliverable, we have also included a
separate section with more technical details of the implementation of the online aggregates, which
provide the declarative real-time analytical framework of INFINITECH. This now relies on the
relational query engine of the INFINISTORE that has been already integrated with our proposed
solution at this phase of the project. It is important to highlight that the implementation details of
our novel semantic concurrency control mechanism described in this section has been filed by
LeanXcale for a patent, and cannot be reported in a public document.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 33

3. Using Declarative SQL to enable Real-Time Data Analytics
This section provides basic documentation on how to configure the use of the online aggregates and
how an aggregate operator can be invoked by the application of a data analyst. In order to configure
a table to exploit the online aggregations, the database administrator would need to declare this
online aggregation table that is related to a raw table. We will continuously refer to the table
containing the raw data with the regular rows as parent table. The following code snippet provides
an example on how to declare those tables.

CREATE TABLE EVENTRAW (

 ev_id integer NOT NULL,

 ev_im_id integer,

 city char(24),

 ev_price integer,

 ev_data char(50),

 CONSTRAINT pk_eventraw PRIMARY KEY (ev_id)

);

CREATE ONLINE AGGREGATE ON EVENTRAW AS AGG_ EVENTBYCITY (

 city,

 max_price max(ev_price),

 count_price count(*),

 min_price min(ev_price),

 sum_price sum(ev_price)

);

In this example, we define a parent table called EVENTRAW, with a standard DDL statement. This
declares that this table will have the ev_id as its primary key, and further defines four (4) additional
columns containing raw data. Additionally, it defines the AGG_EVENTBYNAME as an aggregated
table on the parent one defined above, with the definition of the row operators. We can notice that
the city will be the key of this table, as it does not contain any function, while the 4 additional
columns will calculate online the values of the max_price, count_price, min_price and sum_price.
From the code snippet, it can be noticed that these columns will calculate online the result of the
aggregate operation (max, min, count, sum) of the column ev_price, which is included in the parent
table.

After defining the aggregate table, the user might want to start inserting some data in those tables.
A data insertion in the parent table will need to be accompanied by a corresponding insertion in the
aggregate table. In order for these two statements to be atomic and to ensure data consistency
when updating both tables, these statements need to be bracketed inside a single transaction. The
following code snippet provides such an example.

UPSERT INTO EVENTRAW VALUES (1, 11, 'London', 10, 'aabbccdd');

UPSERT INTO AGG_EVENTBYCITY VALUES ('London', 10, 1, 10, 10);

COMMIT;

In this transaction, a new record is being added in the EVENTRAW table, with the corresponding
values. At the same transaction, the record with key ‘London’ is being updated, by an UPSERT in the
corresponding operational row. In this example, three (3) columns are calculating the value based on
an aggregate operation on the ev_price column, and as a result, the UPSERT statement adds the
value 10. This will be translated in operational values as max(10), min(10), sum(10) and the actual
result of this operation will be calculated online. As the count_price delta column is operating on a
count(*), for this column we added the ‘1’. It is important to mention at this point that the insertion
on a parent table does not need to be followed programmatically anymore with an UPSERT on all

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 33

their relevant aggregated tables with which it is related. The advancements that took place during
the second phase of the project removed this necessity and the query engine itself can now identify
that there is an insertion over a parent table that is associated with a list of online aggregates and it
will add the corresponding values transparently to the data user. As a result, it is not up anymore to
the application developer or data scientist to write these lines of code appropriately, that they can
be error-prone. In our current version of the prototype of the Declarative Real-Time Analytics
Framework, this has been made automatically by the framework itself, as it has been planned to be
implemented during this second phase of the project. However, we keep the syntax here as it can be
more intuitive for the reader to understand these concepts. We have included a specific
demonstrator in a separate section to highlight how everything works together now.

No matter how the operational row is being added to the delta table, the important innovation of
our approach is that we rely on the semantic concurrency control to ensure data consistency while
executing these two statements, while at the same time removing the high contention that they can
introduce when being executed within a traditional SQL relational database management system.
Let’s have a look at the following code snippet, which illustrates how the multi-statement
transaction defined above should be re-written using a typical SQL database.

UPSERT INTO EVENTRAW VALUES (1, 11, 'London', 10, 'aabbccdd');

UPDATE AGG_EVENTBYCITY SET

 MAX_PRICE=MAX(MAX_PRICE, 10),

 COUNT_PRICE=COUNT_PRICE+1,

 MIN_PRICE=MIN(MIN_PRICE, 10),

 SUM_PRICE=SUM_PRICE+10

WHERE CITY = 'London';

COMMIT;

In the case above, according to the type of database, it can cause several problems. As explained in
the previous section, NoSQL databases will suffer from the “Lost Updates” anomaly that will be
revealed when executing the update statement in the AGG_ EVENTBYCITY. In particular, the relevant
{attribute} = {attribute} + value expressions will require a get operation, followed by a put, which will
cause the race condition when two or more concurrent invocations occur, which is actually the
cause of the “Lost Updates”. Relational SQL databases, on the other hand, will suffer from huge
contention, as concurrent updates will target the same operational row identified by the key
‘London’. On the contrary, by managing these types of operations using semantic concurrency
control, there is no contention. The only impact will be on data ingestion, as it will require internally
two operations instead of one, however, the overhead is very low and the overall impact on getting
the pre-calculated values of the aggregated operations is significantly much more important.

Let’s investigate now how the application developer or the data analyst will have to perform an
aggregate operation on the parent table that contains the original raw data. In order to get the max
and average price per city, he/she should submit the following SQL statement:

SELECT city, MAX(ev_price), AVG(ev_price) FROM EVENTRAW GROUP BY city

This statement will indeed return the maximum and minimum prices, grouped by the city. However,
this is a cost-demanding operation, as the database management system will have to traverse the
whole data table, in order to retrieve all ev_prices for the cities, group them by the city column, and
then apply the operation. As this will require the traverse of the whole table, its latency is significant
high, and as a fact, it cannot be considered as online, neither can it be used in use cases where the
online calculation of these values is crucial. Additionally, in traditional operational datastores based
on the 2PL (two-phase locking) protocol for ensuring transactional semantics, it would require the
database management system to acquire shared locks in each data item that is being accessed. This

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 33

would prevent any other write operation to be performed in parallel, as all data modification
operations need to acquire an exclusive lock, which will be forbidden, as shared locks have already
been put by the aggregate operation.

Using the online aggregates proposed by INFINITECH’s Declarative Real-Time Analytics framework,
that statement will be internally translated to the following:

SELECT city, MAX_PRICE, SUM_PRICE/COUNT_PRICE FROM AGG_EVENTBYCITY

This second query runs in much lesser time compared to the previous one, whose execution time is
much higher due to the need to traverse a lot more rows. Even if we apply a filter condition, in order
to get the maximum and average price of a specific city (i.e. adding a WHERE city=’London’) in the
first example, it will require the traverse/scan of the data table, which has a complexity of O(n) or
O(log(n)) (according to whether or not the column city is indexed). On the contrary, using online
aggregates, the online aggregate operation costs O(1) according to the theory of complexity. We
need to highlight at this point that using the advancements we have accomplished during the second
phase of the project, we do not need to attack the delta table anymore, but use an SQL statement
directly attacking the parent one instead. The query engine will identify that the aggregate
operation is linked with an online aggregate and transform the query plan accordingly. More
information on this approach will be given in a separate section.

Our approach can be compared to calculating those values in memory, so that you can have the
results already pre-calculated and have the results returned immediately. However, as we are
dealing with persistence, doing those operations in memory cannot be done. There are several
issues regarding data persistency and fault-tolerance in cases of unexpected shutdowns or crashes,
concurrency control when having to deal with high rates of parallel ingestion and most importantly,
memory is not infinite, and therefore, there is a limited size of records that such a memory-based
implementation could handle. Instead of using an in-memory implementation, we push all those
issues to be solved by the data management layer, which has been designed to solve those and
provides high availability, fault-tolerance and concurrency control mechanisms, while it uses the
persistent storage volumes to scale out.

To conclude, the online aggregates are a really powerful mechanism because they allow you to have
pre-computed data immediately available to serve your application. Note that even if the data
analyst needs a complex KPI, this may be composed of pre-computed aggregates. That’s the case of
the standard deviation statistic for example. Other common scenarios relevant to the finance and
insurance institutions can be also foreseen. For instance, online aggregates can be used in cases
where there is the need for an immediate statistical aggregate in order to provide real-time results
for an application. This is the case of the risk assessment use cases of INFINITECH. Moreover,
working with multi-resolution data is also a good example. There might be a system whose source
devices send information every second, but most statistics can be calculated much more easily at
minute resolution. Aggregates can be used to store aggregated data at minute resolution and at 15
minute resolution will have second raw data. This is the case of the insurance pilot#11 of
INFINITECH, which relies on IoT data coming from sensors installed in the vehicles, and they are pre-
processed before being sent to the central application component deployed within the sandbox.
Finally, together with multidimensional partitioning, online aggregates can be seen as pre-computed
Online Analytical Processing (OLAP) cubes. This is a very powerful data to have available with little
latency to get it. The following section provides a hands-on example on how to make use of this
framework.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 33

4. Real-Time Data Analytics in practice using the direct API
In this section we will provide a hands-on example on how to make use of the Real-Time Data
Analytics framework, developed in the context of T5.3, based on a hypothetical scenario of an
application that monitors the web traffic generated by end-users visiting a website. The requirement
is for the business analyst to have a dashboard that he/she can be able to analyse the user visiting
the website every second. In case the system architect does not want to implement a typical but
complex lambda architecture [4], but instead, to rely only on a single database management system,
then it would be required to periodically execute count operations over a group-by clause at the
time of the insertion. However, this would cause the loss of performance due to the fact that reads
are competitive with writes in an operational datastore. As there are usually many more insertions
than reads, a solution could be to cache the results of the analytics in memory, yet with all the
drawbacks explained in the previous chapter. Instead, the system architect could decide to exploit
the online aggregates provided by our framework in order to serve those aggregate operators in
real-time. In this example we will make use of the direct API of INFINISTORE that exposes the
functionalities related to the online aggregates. This was the standard way for using this feature at
the first phase of the project. We keep this chapter in the current version of the report as it provides
an intuitive way for the user to understand the deeper details of our approach. In the next chapter,
we also provide an additional example on how to make use of the online aggregates using standard
SQL statements and taking advantage of the advancements that we did during the second phase in
the layer of the query engine.

Online aggregates are built on top of the transactional and analytical processing (HTAP) provided by
the data management layer in the scope of T3.1, which is the fundamental pillar for those
operations. Our approach makes use of the delta column, which is capable of providing the result of
an aggregation query, such as the one described above, pre-calculated at the time of insertion, and
persistently stored in the storage medium. This way, getting the aggregate for a value requires
simply reading a row from the relevant aggregate table, which is already pre-calculated, instead of
doing a scan to find the right row and calculate the aggregation. This, in turn, means aggregations in
real-time. They enable the calculation of aggregates of any kind over the data management layer,
without executing a heavy group-by query and without losing performance on an insertion. This
example will demonstrate this, which simulates a monitoring application.

As explained above, when implementing these types of applications, it is very important to take into
consideration the balance between two things: the performance of the data insertions and the
query execution. In the majority of the cases, the number of insertions is dominant, as the rate can
be hundreds of thousands of records per second, while a read operation is executed periodically. As
a result, it seems reasonable to prioritize the insertion performance. However, as our hypothetical
application would need to report various things that would need to execute aggregations over the
end-user’s cookie IDs, when having high volumes of data, those aggregations are very low, and they
can block the insertions. This means that the system is either going to lose currently inserted data or
that the reported data are not going to be real.

4.1 Setting up the application

The application that will demonstrate the use of the online aggregates consists of the following
components:

• The INFINITECH data management layer.

• The Declarative Real-Time Analytics framework, which makes use of the data layer.

• A program3 that simulates data insertion and executes queries periodically.

3 https://gitlab.com/leanxcale_public/onlineaggregation

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 33

• An SQL client, to visualize the results of the queries (SQuirreL [2]or DBeaver [3], are
recommended).

Both the INFINITECH data management layer and the Declarative Real-Time Analytics framework are
available in the project’s private repository and will be retrievable by the INFINITECH Marketplace.

For our hands-on demonstrator, we will generate some controlled data to simulate the insertion of
thousands of cookies per second. An example table containing information of the user when visiting
a website can be depicted as follows:

Table 3: Table containing information from a visitor's cookies

Cookie ID Post Date Other fields

c034868a-2e3e-11eb-adc1-0242ac120002 2020-11-17 15:48:52 {value_1}

c0348a36-2e3e-11eb-adc1-0242ac120002 2020-11-17 15:48:53 {value_2}

c0348b44-2e3e-11eb-adc1-0242ac120002 2020-11-17 15:48:53 {value_3}

c0348c16-2e3e-11eb-adc1-0242ac120002 2020-11-17 15:48:54 {value_4}

The architecture of the solution of this hypothetical scenario consists of i) a loader process and the
program that performs the query executions, ii) the INFINITECH data management layer, with the
addition of the Advanced Analytical Capabilities provided by the Declarative Real-Time Analytics
framework and iii) an SQL client, which can be one of the proposed ones above. We can benefit from
the versatility of the data management layer itself, which provides various ways for data
connectivity, using an SQL or a No-SQL interface. In our example, we rely on the No-SQL interface for
both insertion and query execution, in order to benefit from its improved performance, as it
bypasses the query engine of the datastore, however, there is always the possibility of executing SQL
queries, and we can make use of the SQL client for that. Having this versatility to make use of the
online aggregates, makes it possible to use them with whatever Business Intelligence (BI) tool the
data analyst is familiar with or is better for his / her purposes.

Regarding the data model, we will create a table similar to the one depicted in Table 3 in order to
store the cookie information and two additional tables to store the delta aggregates that will be pre-
calculated at the time of the insertion.

4.2 Implementing the application using online aggregates

Firstly, we will implement the data inserter program, which will be built using Java and Spring Boot.
It will respond to the following three types of requests:

• Run: to start the insertion.

• Clean: to clear the database.

• Query: to start the periodic query executor.

It will make use of a CSV file where it will start reading its lines and it will ingest them into the
database.

Before starting, the application developer needs to make use of the No-SQL interface to enable the
data connectivity with the data management layer. Using maven, it can be locally installed in the
maven repository and then it can be used as a dependency. The following code snippet depicts this
process:

mvn install:install-file -Dfile=kivi-api-1.6-direct-client.jar -

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 33

DgroupId=com.leanxcale -DartifactId=kivi-api -Dversion=1.6 -Dpackaging=jar

<dependency>

 <groupId>com.leanxcale</groupId>

 <artifactId>kivi-api</artifactId>

 <version>1.6</version>

</dependency>

Now it is the time to create the main table containing the row data from the end-users visits, and
the corresponding aggregate tables. The main table will have an alphanumeric ID, and a timestamp,
which will form a composite primary key. In standard SQL this can be done by executing the
following statement:

create table INFO (

 ID VARCHAR,

 POSTDATE TIMESTAMP,

 OTHERFIELD VARCHAR,

 CONSTRAINT PK_INFO PRIMARY KEY (ID, POSTDATE)

);

Programmatically via the No-SQL interface (or as we call it direct api), this can be achieved by
executing the following code snippet:

private static final String TABLE_NAME = "INFO"

(…)

Settings settings = new Settings();

settings.credentials(new Credentials()

.setDatabase(databaseName)

.setUser(user)

.setPass(password.toCharArray()));

settings.transactional();

try (Session session = SessionFactory.newSession(URL, settings)) { // New session

// Table creation:

if (session.database().tableExists(TABLE_NAME)) {

 // Primary key fields

 List<Field> keyFields = Arrays

 .asList(new Field[]{new Field("id", Type.STRING),

 new Field("postdate", Type.TIMESTAMP)});

 // Rest of fields

 List<Field> fields = Arrays

 .asList(new Field[]{

 new Field("otherfield", Type.STRING)

 });

 // Table creation

 session.database().createTable(TABLE_NAME, keyFields, fields);

 }

}

In order to retrieve the information regarding how many different users have visited the monitored
web page and how many times, or how many visits per day our page has had, then the database
administrator will have to execute SQL queries such as the following:

select id, count(id) from info group by id;

select FLOOR(POSTDATE to DAY) as fecha, count(*) AS total FROM info group by

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 33

FLOOR(POSTDATE to DAY);

In order to take advantage of the Declarative Real-Time Analytics framework and execute these
queries online in order to get the pre-calculated aggregated value with the same cost of accessing a
row by its primary key, we need to use the delta columns to holds operational values. Those
operational values will pre-calculate the result of the aggregate operation. For that, we are going to
create an aggregate table. We would need to define two: one for the ID count and one for the date
count. The field from which we are going to aggregate must be the aggregate table PK, and the
aggregator must be defined as delta in the field creation. The following code snippet indicates how
to do it:

private static final String ID_COUNT_DELTA_TABLE_NAME = "INFO_ID_DELTA";

private static final String DATE_COUNT_DELTA_TABLE_NAME = "INFO_DATE_DELTA";

(…)

Settings settings = new Settings();

settings.credentials(new Credentials()

.setDatabase(databaseName)

.setUser(user)

.setPass(password.toCharArray()));

settings.transactional();

try (Session session = SessionFactory.newSession(url, settings)) { // New session

// Aggregation table creation:

if (!session.database().tableExists(ID_COUNT_DELTA_TABLE_NAME)) {

 List<Field> keyFields = Arrays

 .asList(new Field[]{new Field("id", Type.STRING)});

 List<Field> fields = Arrays

 .asList(new Field[]{

 new Field("count", Type.LONG, DeltaType.ADD)});

 session.database().createTable(

 ID_COUNT_DELTA_TABLE_NAME, keyFields, fields);

}

// Aggregation table creation:

if (!session.database().tableExists(DATE_COUNT_DELTA_TABLE_NAME)) {

 List<Field> keyFields = Arrays

 .asList(new Field[]{new Field("postdate", Type.DATE)});

 List<Field> fields = Arrays

 .asList(new Field[]{

 new Field("count", Type.LONG, DeltaType.ADD)});

 session.database().createTable(

 DATE_COUNT_DELTA_TABLE_NAME, keyFields, fields);

}

We have defined two tables, one per aggregate:

• The first table, INFO_ID_delta, corresponds to query select id, count(id) from info group by
id;. Since we want to group it by ID, the ID is going to be the PK of this delta table. The
aggregate will be the count, and we will add 1 to the pre-calculated aggregate (please note
the delta field is declared as DeltaType.ADD).

• Similarly, the second table, INFO_DATE_delta, corresponds to query select
FLOOR(POSTDATE to DAY) as fecha, count(FLOOR(POSTDATE to DAY)) AS total FROM info
group by FLOOR(POSTDATE to DAY); the table PK is going to be the postdate field, and the
aggregate will again be the count.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 33

After the schema and the aggregated tables definition, we are going to write a code to insert data
from the CSV file. It is important to highlight at this point that an insertion in the main table INFO
must be followed by a corresponding insertion in the aggregated tables that we previously defined.
The following code snippet illustrates this:

try (Session session = SessionFactory.newSession(url, settings)) { // New session

 session.beginTransaction();

 Table infoTable = session.database().getTable(TABLE_NAME);

 Table infoIdTable = session.database().getTable(ID_COUNT_DELTA_TABLE_NAME);

 Table infoPostdateTable =

 session.database().getTable(DATE_COUNT_DELTA_TABLE_NAME);

 // Insert into info table

 Tuple tuple = infoTable.createTuple();

 tuple.putString("id", id);

 SimpleDateFormat dateFormat = new SimpleDateFormat(

 "dd-MM-yyyy HH:mm:ss.SSS");

 Date date = dateFormat.parse(postdateString);

 tuple.putTimestamp("postdate", new Timestamp(date.getTime()));

 tuple.putString("otherfield", otherfield);

 infoTable.insert(tuple);

 // Insert into info_id_delta

 Tuple tupleIdDelta = infoIdTable.createTuple();

 tupleIdDelta.putString("id", id);

 tupleIdDelta.putLong("count", 1L); // We add 1 to our DeltaType.ADD field

 infoIdTable.upsert(tuple);

 // Insert into info_date_delta

 Tuple tupleDateDelta = infoPostdateTable.createTuple();

 tupleDateDelta.putDate("postdate", new java.sql.Date(date.getTime()));

 tupleDateDelta.putLong("count", 1L);

 infoPostdateTable.upsert(tupleDateDelta); // We add 1 to our DeltaType.ADD

 field

 session.commit();

}

Finally, in order to retrieve data using the online aggregates, the following code snippet can be used,
which relies on the No-SQL interface that we provide.

try{

 session= SessionFactory.newSession(url, settings);

 infoTable = session.database().getTable(Constants.TABLE_NAME);

 infoIdTable = session.database().getTable(Constants.ID_COUNT_DELTA_TABLE_NAME);

 infoPostdateTable = session.database().getTable(Constants.DATE_COUNT_DELTA_TABLE_NAME);

 while (executions < 1000) {

 log.info("---

------------------------------");

 log.info("LX: Querying info table for number of rows...");

 session.beginTransaction();

 // Build TupleIterable, execute find with count aggregation and iterate

 // over the result (select count(*) from info)

 TupleIterable res = infoTable.find().aggregate(Collections.emptyList(),

Aggregations.count("numRows"));

 res.forEach(tuple -> log.info("Rows: " + tuple.getLong("numRows")));

 log.info("LX Querying info table done!");

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 33

 log.info("---

------------------------------");

 log.info("LX: Querying id delta table...");

 long t1 = System.currentTimeMillis();

 // select * from info_id_delta

 TupleIterable res2 = infoIdTable.find();

 res2.forEach(tuple -> log.info("Id: " + tuple.getString("id") + " Count: " +

tuple.getLong("count")));

 long t2 = System.currentTimeMillis();

 log.info("LX Query time: {} ms", t2 - t1);

 log.info("LX Querying id delta table done!");

 log.info("---

------------------------------");

 log.info("LX: Querying postdate delta table...");

 long t3 = System.currentTimeMillis();

 // select * from info_date_delta

 TupleIterable res3 = infoPostdateTable.find();

 res3.forEach(tuple -> log.info("Date: " + tuple.getDate("postdate") + " Count: " +

tuple.getLong("count")));

 session.commit();

 long t4 = System.currentTimeMillis();

 log.info("LX Query time: {} ms", t4 - t3);

 log.info("LX Querying id delta table done!");

 executions++;

 Thread.sleep(5000);

 }

}

finally {

 if (session == null) {

 session.close();

 }

}

To conclude, we demonstrated how we can implement a hypothetical application that could benefit
from the use of online aggregates and we demonstrated with this hands-on chapter the capabilities
of the Declarative Real-Time Analytical framework of INFINITECH. During this second phase of the
project, we have accomplished to now extend the SQL syntax which now provides automation in the
query engine level, so that the definition of table aggregations and insertions in tables that trigger
insertions on aggregated tables can be automatically executed in the query engine level. This will be
demonstrated in the following chapter.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 33

5. Real-Time Data Analytics in practice using SQL syntax
During the first phase of the project, the main focus of the work that was carried out under the
scope of task T5.3 “Declarative Real-Time Data Analytics” was to implement the fundamental pillars
for the provision of the online aggregates. This required the implementation of our novel semantic
concurrency control mechanism in the storage engine of INFINISTORE with the definition of the
operational rows that are stored in the aggregated/delta tables, using delta columns over numeric
data types. Moreover, we exposed the relevant functionalities by extending the direct API of the
INFINISTORE, which allows the data user to define delta tables add data to these new data
structures and perform operations that can benefit from the online aggregates.

The main drawback of this approach is that it is the responsibility of the data user or application
developer to take care of the insertion of both the data value row and the operational row to the
two data structures (the parent and the derived/delta table), which can be error prune, in case he or
she forgets to add both. Moreover, in order to make use of the online aggregates, the data user or
application developer needed to know the underlying specifics of the data structures in order to
access them and perform those operations. Finally, the use of the direct API, which is not standard,
introduced the need to write a data vendor-specific code at the application level, while it could not
be exploited by analytical frameworks that often require data connections provided via well-known
standards such as JDBC, while statements can be auto-generated using standard SQL statements.

For all these reasons, during this second phase of the project, the main focus was given on the
integration of the relational query engine of INFINISTORE with the storage engine, in order to
provide real-time data analytics using our online aggregates in a declarative manner using standard
SQL, while the query engine will take the responsibility to execute the involved operations
transparently to the data user, thus hiding all internal specifics of the framework from him or her.
The latter will only have to declare the online aggregates data tables, and then only focus on writing
the queries to insert or retrieve data with standard SQL statements.

This section provides examples on how to configure and make use of this framework for declarative
and real-time analytics, diving into detail on how everything is being executed in the background by
the relational query engine of INFINISTORE. This was successfully demonstrated during the first
interim review of the project, integrated by Pilot#2 “Real-time risk assessment in Investment
Banking”, which is the pilot that benefits from our solution.

5.1 Online Aggregates in Real-Time Risk Assessment

Pilot#2 “Real-time risk assessment in Investment Banking” calculates the risk for making a trade in
order to move an amount of money from one financial currency to another at a specific time. For the
analysis of the risk assessment, it gathers data from different data streams that contain information
of the current value of a product (i.e. EURO to US Dollars currency) every second. This data is being
ingested into the INFINISTORE. As there is a vast amount of different products, this can end to
hundreds of data items needed to be ingested per second, which is a fairly intensive one. Each data
row contains the type of product, the open, high, low, close, up and down values of the product at a
specific timestamp. An example of these rows can be depicted in the following code snippet:

1.05389,1.05389,1.05389,1.05389,0,0,2020-03-19 23:05:24,EURCHF

1.06887,1.06887,1.06887,1.06887,0,0,2020-03-19 23:05:24,EURUSD

1.06885,1.06885,1.06885,1.06885,0,0,2020-03-19 23:05:25,EURUSD

1.14986,1.14986,1.14986,1.14986,0,0,2020-03-19 23:05:25,GBPUSD

1.05389,1.05389,1.05389,1.05389,0,0,2020-03-19 23:05:27,EURCHF

1.06886,1.06886,1.06886,1.06886,0,0,2020-03-19 23:05:27,EURUSD

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 33

In this scenario, pilot#2 needs to feed its AI algorithm with aggregated values of this data that
contains the average values per product and per a specific time period (i.e. minutes, hours, days). In
order to do so, it would need to push these statements down to the data management layer, so that
the latter can do the pre-processing and send only the aggregated values to the AI algorithm. This
would require a scan operation on a vast amount of data items stored in the table that contains this
information, and as we have seen, this not only is cost-expensive but also contradictive when
performing this type of operation on a live dataset which is continuously being loaded with new
information. This is exactly what the online aggregates solve and we will see in the following
subsections how we can make use of them in this scenario.

5.2 Deploying Online Aggregates with INFINISTORE

At this phase of the project, the implementation of the online aggregates has been integrated with
INFINISTORE, and can be used by accessing the latter via JDBC connections. As a result, we would
need to deploy the INFINISTORE data management layer, as the online aggregates are an integral
part of this solution. Right now, the INFINISTORE can be deployed via the INFINITECH way defined
under the scope of WP6, making use of its relevant blueprints. The deployment will make use of
Kubernetes, and the following code snippet depicts a blueprint YAML file that can be used4:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: infinistore

 labels:

 app: infinistore

spec:

 serviceName: infinistore-service

 replicas: 1

 selector:

 matchLabels:

 app: infinistore

 updateStrategy:

 type: RollingUpdate

 podManagementPolicy: OrderedReady

 template:

 metadata:

 labels:

 app: infinistore

 spec:

 initContainers:

 - name: infinistore-home-fix

 image: busybox:1.30.1

 command: ["/bin/sh", "-c", "chown -R 999:999 /datasets"]

 volumeMounts:

 - name: infinistore-datasets-storage

 mountPath: /datasets

 containers:

 - image: harbor.infinitech-h2020.eu/data-management/infinistore:latest

 name: infinistore

 ports:

 - containerPort: 2181

 - containerPort: 1529

4 The blueprints for pilot2 can be also found under the project’s gitlab repository: https://gitlab.infinitech-

h2020.eu/blueprint/pilot2

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 33

 - containerPort: 9876

 - containerPort: 9992

 - containerPort: 14400

 - containerPort: 9800

 volumeMounts:

 - name: infinistore-datasets-storage

 mountPath: /datasets

 startupProbe:

 exec:

 command:

 - /bin/sh

 - -c

 - python3 /lx/LX-BIN/scripts/lxManageNode.py check QE

 timeoutSeconds: 5

 failureThreshold: 30

 periodSeconds: 10

 resources:

 limits:

 cpu: 4000m

 memory: 8Gi

 requests:

 cpu: 2000m

 memory: 4Gi

 env:

 - name: USEIP

 value: "yes"

 - name: KVPEXTERNALIP

 value: "infinistore-service!9800"

 restartPolicy: Always

 imagePullSecrets:

 - name: registrysecret

 volumes:

 - name: infinistore-datasets-storage

 persistentVolumeClaim:

 claimName: infinistore-datasets-pvc

We would also need to define a service to expose the 1529 port, which is where JDBC is listening to:

apiVersion: v1

kind: Service

metadata:

 name: infinistore-service

 labels:

 app: infinistore

spec:

 ports:

 - name: "1529"

 port: 1529

 targetPort: 1529

 selector:

 app: infinistore

Using these blueprints, the INFINISTORE can be deployed using Kubernetes and can be accessible
from an SQL client like DBeaver. In the following section we will see how to declare the online
aggregates for the user scenario we are exploring for pilot#2.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 33

5.3 Declaring the Online Aggregates

As it was shown, the raw data that contains the financial information per product consists of 6
numeric values, an identifier and a timestamp and it will be imported to a single data table. The
identifier with the timestamp will formulate the compound primary key of that table. The following
DDL statement creates this structure:

CREATE TABLE TickData (

TIK_OPEN DOUBLE,

TIK_HIGH DOUBLE,

TIK_LOW DOUBLE,

TIK_CLOSE DOUBLE,

TIK_UP DOUBLE,

TIK_DOWN DOUBLE,

DATETIME TIMESTAMP,

PRODUCT VARCHAR,

PRIMARY KEY(PRODUCT, DATETIME)

);

This table uses a standard DDL SQL statement that declares a data table named TickData with 6
numeric columns of type DOUBLE and two additional ones that are part of the primary key. This will
be the parent table of the online aggregates that we will declare soon after. The AI algorithm of
pilot#2 needs to retrieve the average close value per product per day, hour and minute. Instead of
executing these three statements by directly attacking the parent table, we can now make use of
the online aggregates. That way, we will avoid traversing a vast amount of data, and we can now
rely on our novel mechanism that pre-calculates those values. As we need three types of
aggregations, we will create three online aggregates.

The following code snippet declares an online aggregate per product and per day:

CREATE ONLINE AGGREGATE MIN_CLOSE_DAILY AS

sum(TIK_CLOSE) MIN_CLOSE_SUM,

count(TIK_CLOSE) MIN_CLOSE_COUNT

FROM TICKDATA

GROUP BY PRODUCT,

CTUMBLE(DATETIME, INTERVAL '1' day, TIMESTAMP '1970-01-01 00:00:00') DATETIME;

The following code snippet declares an online aggregate per product and per hour:

CREATE ONLINE AGGREGATE MIN_CLOSE_DAILY AS

sum(TIK_CLOSE) MIN_CLOSE_SUM,

count(TIK_CLOSE) MIN_CLOSE_COUNT

FROM TICKDATA

GROUP BY PRODUCT,

CTUMBLE(DATETIME, INTERVAL '1' hour, TIMESTAMP '1970-01-01 00:00:00') DATETIME;

The following code snippet declares an online aggregate per product and per minute:

CREATE ONLINE AGGREGATE MIN_CLOSE_DAILY AS

sum(TIK_CLOSE) MIN_CLOSE_SUM,

count(TIK_CLOSE) MIN_CLOSE_COUNT

FROM TICKDATA

GROUP BY PRODUCT,

CTUMBLE(DATETIME, INTERVAL '1' minute, TIMESTAMP '1970-01-01 00:00:00') DATETIME;

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 33

As we can see, we have extended the DDL SQL syntax of the INFINISTORE relational query engine to
allow the definition of such structures. Now the reserved words ONLINE AGGRAGETE, followed by its
name will instruct the query engine to create a derived table that will be associated with the parent
table that is defined in the FROM clause. In our scenario, that will be the TickData previously
declared.

Our structures will pre-calculate the results of the count and sum operations over the data column
TIK_CLOSE of the parent table. We need to remember that the data analyst is interested in finding
the average value of this column per product and per different time period. The average is
equivalent to the summary divided by count, so we define these operations in our online
aggregates.

Last but not least, the columns that are involved in the GROUP BY clause will formulate the primary
key of our new data structure. In our scenarios we rely on the product, which is a static data column
defined in the parent table, and the result of an SQL function, whose result is being retrieved
dynamically by applying the CTUMBLE function over another static column of the parent table, that
is also part of the primary key: the DATETIME. This is a feature that was implemented at the very
end of the second phase of this task and allows to define an online aggregate not only over static
columns but also over dynamic ones, as this example clearly demonstrates.

In this subsection, we saw how we can make use of the declarative real-time analytical framework to
define our online aggregates using extended SQL DDL statements over standard JDBC connections.
As we have created our data structures, we load the parent tables with a set of historical data
containing financial currencies for a list of different products. The data has been provided to us in a
CSV file and we made use of the INFINISTORE data loader to import them, whose use is out of the
scope of this report. The important thing to highlight here is that although we use the data loader
that only adds raw data to the parent table, we do not need to proceed to any further action to
update the delta table, as this is being done automatically by the storage engine layer and
transparently to the data user. Having loaded the historical dataset, in the next subsection we will
demonstrate the use of the online aggregates in practice.

5.4 Using Online Aggregates with standard SQL statements

To highlight the benefits of using our framework for declarative real-time data analytics, we
deployed two instances of the INFINISTORE: in the first one we used only the parent table, while in
the second we also declared the three online aggregates. Then we load both tables with the same
CSV file that contains the historical data for financial currencies. The difference is that in our second
deployment, this data was transparently loaded in the newly created derived tables.

We used the DBeaver tool to connect to both instances. We will call the first instance Vanilla
Infinistore and the second Online Aggregates. When connecting to both, we can see that the vanilla
one contains only the TickData table, along with some additional ones that are used by pilot#2, while
the second instance also contains the newly created online aggregates. This is depicted in Figure 1.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 33

Figure 1: Online Aggregates Data Structures

Now we will execute a query that is being periodically sent by the AI algorithms of pilot#2, to get the
average value of the TIK_CLOSE per product and per minute. The query can be depicted in Figure 2.

Figure 2: SQL Aggregation Query Statement

Here we have a standard SQL statement that is requesting the average value of the TIK_CLOSE
column, from the corresponding data table, grouped by the product static field and the dynamically
created period of time, which is a per minute base. The columns involved in the GROUP BY clause
are also part of the project defined in the SELECT statement, while we also included a filter
operation defined by the WHERE clause to avoid the full scan of the table. As the product is the first
column defined in the primary key, the filter will make use of the related index, so the scan
operation to retrieve the intermediate dataset that will be pushed to the aggregate operation will
have a logarithmic complexity, instead of a linear. As graphical user SQL clients tend to only show
the first 100s of rows of the result, and to make things fair, we also added the ORDER BY clause,

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 33

which will force the INFINISTORE query engine to firstly calculate all rows of the aggregations, and
then to order them. That way, it will always calculate the entire returned result set.

We executed this statement in the vanilla infinistore first. It took approximately 8 seconds for this
operation to return. Then we executed the same statement using our Online Aggregates
implementation. The result was retrieved in less than 800 milliseconds, which is 10 times faster. This
means that the latency was 10% of the one required by a vanilla deployment. Things can get even
worse if we remove the filter operation defined in the WHERE clause. In our historical dataset, we
have financial currencies of 4 different products during a specific period of 8 months. If we remove
the WHERE clause, the query engine has to traverse the whole parent table. In other words, it will
have to calculate the result of the aggregation of an input intermediate dataset that is 4 times
bigger. As a result, the latency of this execution with the vanilla datastore is around 30secs, while
using the online aggregates is almost 2 secs.

What must be highlighted at this point, is that the vanilla datastore will have to traverse the whole
data table each time an operation that implements aggregates is involved, while using the online
aggregates, it will only have to traverse the data rows that are stored in the derived table. These
rows depend on the granularity of the data that are involved in the GROUP BY clause: that is the
primary key of the derived delta table.

In order for the reader to fully understand this concept, we will execute the same SQL statement,
this time getting the average values of the TIK_CLOSE column on a per daily basis. We only need to
change the reserved word minute to day in our CTUMBLE function. We need to remember now that
we have initially defined another online aggregate that pre-calculates on a per daily basis. If we
execute this statement in the vanilla datastore, the result will be the same: around 30secs. This is
due to the fact that the relational query engine will always have to traverse the whole data table to
calculate these values, and its data size is the same each time. Now let’s do the same using our
online aggregates. A day contains 24*60=1440 minutes. This means that our derived table related to
the execution of the online aggregate per day will contain 1440 times fewer data. As it will also have
to traverse the whole derived table, this means that this time, it will have to traverse 1440 times
fewer data rows. As a result, the overall latency this time is just a couple of milliseconds, with the
majority of them related to query compilation and data transmission, rather than the query
execution itself. This means that the overall latency of the online aggregates is related to the
granularity of the primary key of the data table, wherein in some cases it can be just a few rows. As a
result, the computational complexity of the query execution can be near O(1).

Let’s see now how the relational query engine of the INFINISTORE internally works when it needs to
execute online aggregates. In our example, we used the exact same standard SQL statement in both
cases. To better understand how it works transparently to the data user, we need to investigate the
query plans decided in both scenarios. To see the query plan of the query engine, we will execute
the following statement, depicted in Figure 3.

Figure 3: Asking for the query plan of the online aggregate

Using the EXPLAN PLAN reserved words, followed by the query statement that we initially
submitted, the query engine will not execute the query plan, rather than returning to use the query

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 33

plan itself, to investigate what would have decided to execute. For the vanilla instance, the query
plan that has been decided is depicted in Figure 4.

Figure 4: Query plan for vanilla datastore

A query plan is a graph of query operations that the output of each one is being used as an input by
its upper layer in the graph. Giving analytical details on what this plan is actually doing is out of the
scope of this report. However, what we can see from the query plan of Figure 4 is that at the bottom
of the graph lies a KiviPKTableScanRel operation, which performs a scan over the parent table taking
advantage of the primary key. The reason for this is that we initially included a filter operation using
the WHERE clause over a column that is the first part of the primary key. The KiviPKTableScanRel
operation will attack the TICDATA data table that contains the raw data of the historical dataset and
will have to traverse a vast amount of data with a computational complexity of O(log(n)), as we
explained previously.

Let’s now see the query plan that has been decided when having declared our online aggregates.
The query plan can be depicted in Figure 5.

Figure 5: Query plan using online aggregates

We need to take a look at the operation of the bottom layer of the graph. In this case, the query
engine identifies that has been already declared an online aggregate that is related to the submitted
SQL statement, and instead of a scan on the parent table, it will make use of the
KiviDerivedTableScanRel operation. The latter will scan the derived table called
MIN_CLOSE_MINUTELY, which is actually the name of the online aggregate that we defined in the
previous subsection and can be shown in Figure 1. A full scan in the derived table requires the
traverse of a limited amount of data records that are related to the granularity of the primary key
and can reduce the overall execution time from 30secs to just a couple of milliseconds, as we
showed previously.

Concluding this chapter, what we have accomplished during the second phase of the project is to
develop a framework that allows for defining the online aggregates in a declarative manner, and
make use of them by executing standard SQL statements using standard JDBC connections. The
relational query engine has been now integrated with this functionality that was provided by the
storage layer during the first phase of the project, and now can redirect such analytics over the
derived tables, transparently to the data user or application developer.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 33

6. Conclusions and next steps
This report documented the work that has been carried out in the scope of task T5.3 “Declarative
Real-Time Data Analytics” at this second phase of the project. The main objective of this task is to
provide a framework that will enable the execution of data analytics in real-time (online) in a
declarative fashion. Towards this, we first identified the need for BigData applications in the financial
and insurance sector to execute data analytic operations in real-time, while their datasets are being
continuously updated by a data ingestion process at high rates. We presented the main
technological barriers that are currently being tackled by the system architectures and what
solutions exist and are commonly used. Then we investigated how we could benefit by pre-
calculating the aggregated value beforehand and by storing this value in a separate field, inside a
particular column of a data table. For this, we proposed the notion of aggregate tables. We verified
the feasibility of our proposal when being used by both SQL and NoSQL database management
systems, and we realized that both sides of the data ecosystem deal with significant issues: in the
NoSQL world data consistency is broken due to the Lost Updates anomaly, while in SQL solutions,
efficient execution of the statements is not feasible due to the high contention that the database
transaction create. In order to overcome this, and exploit the hybrid transactional and analytical
processing (HTAP) capabilities of the INFINITECH data management layer, we introduced the online
aggregates. Those can in fact assist in overcoming the barriers explained before by relying on the
semantic concurrency control mechanism of the database.

After introducing the online aggregates, we provided documentation on how these can be used by
exploiting the direct API that allows data connection with the storage engine of the datastore. The
important thing here is the definition of the aggregated tables which are needed to store the
operational (delta) rows along with the tables themselves that hold the raw data. Additionally, each
insert operation in a raw table will require the application developer or data scientist to also take
care of the fact that he/she needs to insert the corresponding operational rows in the aggregated
tables. Then, by executing a standard SQL statement, the query engine can transform it and take
benefit from the additional structures that contain the pre-calculated values. Finally, a hands-on
demonstrator was presented that can be used as a guideline for application developers and data
scientists on how to integrate their solutions with our framework. This has been validated by pilot#2
(“Real-time risk assessment in Investment Banking”) of the project that makes extensive use of our
approach. We have shown how the data user or application developer can benefit from the use of
the online aggregates and execute complex analytical operations in times of magnitude faster than
traditional approaches, ensuring data consistency at the same time and avoiding high contention
during the data ingestion process. This shows how our solution helps developers as well. In order to
have online analytics over an operational dataset, the developers will have to either rely on one of
the existing database technologies, or go to an hybrid approach. With the latter, apart from being
very expensive to maintain, they will have to sacrifice the online aspect. If they decide to go to on of
the existing technologies, this will have to sacrifice either data consistency (which is unacceptable in
the finance domain) or concurrency (which cannot be done in BigData) and the cost for the
developers to overcome these problems is very high.

To conclude, the progress of task T5.3 can be considered ahead of the plan at this phase of the
project, as all its main objectives have been already mostly addressed. This was important as this
task provides the outcomes that will be used as the main pillars for the development of the
parallelization of the algorithms, which is under T5.2, and which will be exploited by the query
processing framework, developed in T3.3. In the last phase of this task, a benchmark evaluation will
be provided via experimentation with other solutions, comparing the execution time of our
framework with other approaches used by other database vendors (i.e., PostgreSQL triggers). Finally,
any modifications and possible extensions will be reported at the last version of the document in
M30, as the intention is to further validate our approach with additional pilots and the streaming
processing framework of INFINITECH.

D5.5 – Framework for Declarative and Configurable Analytics - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 33

7. References
[1]. Tamer Özsu, Patrick Valduriez. Principles of Distributed Database Systems, 4th Edition,

Springer, 2020
[2]. Squirrel, SQL UI client, http://squirrel-sql.sourceforge.net/
[3]. DBeaver, SQL UI client, https://dbeaver.io/
[4]. What is a lambda architecture? https://databricks.com/glossary/lambda-architecture

https://dbeaver.io/

