
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D6.11 – Sandboxes for FinTech and
InsuranceTech Innovators - II

Revision Number 1.0

Task Reference T6.5

Lead Beneficiary ENG

Responsible Domenico Messina - Susanna Bonura

Partners Participating partners in Task according to DOA

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2021-09-30

Delivered Date 2021-10-01

Internal Reviewers BOUN, CTAG

Quality Assurance CCA

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no 856632

Ref. Ares(2021)5979065 - 01/10/2021

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 49

Contributing Partners
Partner Acronym Role1 Author(s)2

ENG Lead Beneficiary Domenico Messina – Susanna Bonura

HPE Contributor

NOVA Contributor

JRC Contributor

ATOS Contributor

SILO Contributor

WEA Contributor

GEN Contributor

GFT Contributor

BOUN Internal Reviewer

CTAG Internal Reviewer

CCA Quality Assurance

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance
2 Can be left void

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 49

Revision History
Version Date Partner(s) Description

0.1 2021-07-20 ENG and contrib.
partners

ToC Version

0.2 2021-08-30 ENG, WEA, LXS Pilot #13 contribution merged

0.3 2021-09-02 ENG, SILO, UBI,
ISPRINT

Pilot #12 contribution merged

0.4 2021-09-09 ENG, JRC, INNOV Pilot #2 contribution merged

0.5 2021-09-15 ENG, ATOS, GEN,
AGRO

Pilot #11 and Pilot#14 contribution merged

0.6 2021-09-16 HPE, ENG Contribution on design and tools (HPE) merged

0.7 2021-09-27 ENG First Version ready for Internal Peer Review

0.8 2021-09-29 BOUN, CTAG, CCA Version after Internal Peer Review and QA

0.9 2021-09-30 HPE, GFT Overall review

1.0 2021-10-01 ENG Version for Submission

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 49

Executive Summary
Within the INFINITECH Work Package 6 – Tailored Sandboxes and Testbeds for Experimentation and
Validation, this document describes the second of the three expected results of the task T6.5 –
FinTech/InsuranceTech Testbed Establishment and Customization.

This document describes the creation of the NOVA testbed and the construction of the required
architectural stack needed to manage the sandboxes. Then, a way was defined to map a Pilot’s components
upward (in relation to the INFINITECH Reference Architecture) and downward (in relation to the
Kubernetes ecosystem, which was chosen to orchestrate the execution environment). The downward
mapping was a placeholder for the imminent migration of the NOVA infrastructure, and it clarified what the
contributors expected to get. Moreover, this document shows how that placeholder evolves into an actual
set of application-and-orchestration-specific artifacts and how they are consumed in order to get a fully
working sandbox for each Pilot. It underlines what the main characteristics of each sandbox are, an explains
if any critical points were met and, in this case, how they are handled.

The description of the used tools is provided, to gather both standard and domain-specific/application-
specific metrics to make a user be able to perform benchmarking activities and optimizations.

Once all the metrics are identified and all the tools are described, the probes will be accessed over time to
reach the third and last objective of having a big picture of the whole workload in the various system
conditions that may occur; metrics-related idle information will be an essential input for the deliverable
D6.12 – Sandboxes for FinTech and InsuranceTech Innovators - III.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 49

Table of Contents
1 Introduction ... 9

1.1 Objective of the Deliverable ..9
1.2 Insights from other Tasks and Deliverables ... 9
1.3 Structure ..10

2 INFINITECH System Design for shared testbed ..11
2.1 General system design of the shared testbed ..11
2.2 Testbed monitoring tools ...17
2.3 Testbed metrics collection .. 21

3 Sandboxes for FinTech and InsuranceTech innovators .. 22
3.1 Pilot#2 – Real-time risk assessment in Investment Banking ..22

3.1.1 NOVA sandbox description ...23
3.1.2 Second-stage components deployment on NOVA...24
3.1.3 Metrics in idle condition ...25

3.2 Pilot#11 – Personalized insurance products based on IoT connected vehicles 25
3.2.1 NOVA sandbox description ...26
3.2.2 Second-stage components deployment on NOVA...28
3.2.3 Metrics in idle condition ...30

3.3 Pilot#12 – Real World Data for Novel Health-Insurance products ... 30
3.3.1 NOVA sandbox description ...31
3.3.2 Second stage components deployment on NOVA ... 32
3.3.3 Metrics in idle condition ...37

3.4 Pilot #13 – Alternative/automated insurance risk selection -– product recommendation for
SME...37

3.4.1 NOVA sandbox description ...38
3.4.2 Second-stage components deployment on NOVA...39
3.4.3 Metrics in idle condition ...40

3.5 Pilot#14 – Big Data and IoT for the Agricultural Insurance Industry41
3.5.1 NOVA sandbox description ...41
3.5.2 Second-stage components deployment on NOVA...42
3.5.3 Metrics in idle condition ...45

4 Conclusions ...47

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 49

List of Figures
Figure 1 – INFINITECH Work Breakdown Structure ..10
Figure 2 - NOVA Blueprint replication .. 11
Figure 3 – Overview of the clusters managed by Rancher ...14
Figure 4 – NOVA Network .. 15
Figure 5 – Edit Cluster on Rancher .. 16
Figure 6 – Prometheus and Grafana in a k8s cluster .. 17
Figure 7 – Cluster-specific main page ..18
Figure 8 – Cluster-specific Monitoring configuration page ...19
Figure 9 -– Monitoring Metrics Summary ... 19
Figure 10 – Grafana Data Representation ... 20
Figure 11 – Grafana-specific Values .. 20
Figure 12 – Pilot #2 Overview .. 22
Figure 13 – Resources utilization by Pilot#2 .. 25
Figure 14 – Pilot#2 nodes list ... 25
Figure 15 – Pilot #11 data gathering & management .. 26
Figure 16 – Atos’ Smart Fleet core components ..27
Figure 17 – Pilot #11 application topology on Kubernetes .. 28
Figure 18 – Resources utilization by Pilot #11 ...30
Figure 19 – Pilot #11 nodes list .. 30
Figure 20 – INFINITECH Pilot #12 system comprising Healthentia and the Pilot #12 testbed31
Figure 21 – INFINITECH Pilot #12 testbed components deployed on NOVA sandbox32
Figure 22 – Pilot#13 Overview ... 37
Figure 23 – Resources utilization by Pilot#13 ..41
Figure 24 – Pilot#13 nodes list ... 41
Figure 25 – Flowchart of the WRF-ARW modelling system. ... 42
Figure 26 – Resources utilization by Pilot #14 ...45
Figure 27 – Pilot #14 nodes list. ... 46

List of Tables
Table 1 – Pilot Requirements ... 16
Table 2 - Node Template ..17
Table 3 – Metrics collection .. 21
Table 4 – Grouping and matching CORINE land use classes to USGS classes42

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 49

Abbreviations/Acronyms
Abbreviation Definition

AgI Agricultural Insurance

AMI Amazon Machine Image

API Application Programming Interface

AWS Amazon Web Services

AWS EBS Amazon Web Services Elastic Block Store

AWS EKS Amazon Web Services Elastic Kubernetes Service

AWS ELB Amazon Web Services Elastic Load Balancer

AWS KMS Key Management Service

BP Blueprint

CICD Continuous Integration Continuous Development

CLI Command Line Interface

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

DNS Dynamic Name Resolution

ENI Elastic network interfaces

EKS Elastic Kubernetes Service

EO Earth Observation

GKS Google Kubernetes Engine

HA High Availability

HCL Hashi Corp Configuration Language

HTAP Hybrid Transactional and Analytical Processing

IAM Identity and Access Management

IP Internet Protocol

K3S Lightweight Kubernetes

K8S Kubernetes

ML/DL Machine Learning Deep Learning

PoC Proof of Concept

PV Persistent Volume

PVC Persistent Volume Claim

RBAC Role-Based Access Control

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 49

RKE Rancher Kubernetes Engine

SHARP Smart, Holistic, Autonomous, Regulatory-compliant, Personalized

SSH Secure Socket Shell

YAML YAML Ain't Markup Language

VaR Value-at-Risk

VM Virtual Machine

VPC Virtual Private Cloud

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 49

1 Introduction
The activities performed within the task T6.5 after planning and executing all the technical operations
described in the deliverable D6.10 – Sandboxes for FinTech and InsuranceTech Innovators - I, had a positive
impact on the involved partners: Pilots and tech-proxies had a first experience with “The INFINITECH way”
software development process, targeting the NOVA testbed as the execution environment. This experience
is maturing and evolving day-by-day, building up remarkable teamwork that allowed us to overcome all the
constraints held by any on-premises infrastructures (in comparison with a cloud solution) to reach, at the
end of the day, a smooth development experience that allows users to “just focus on the code and forget
about the rest”, according to the canonical DevOps best practices.

D6.11 – Sandboxes for FinTech and InsuranceTech Innovators - II digs deeper into the topic of sandbox
tailoring, explaining all the artifacts produced by the contributors and the approach taken to reach the
objectives that will be briefly discussed in the next paragraph.

1.1 Objective of the Deliverable
Taking a step back, just to provide an eagle’s eye view of the whole T6.5 roadmap, the focus on the first
period was directed towards the creation of the testbed (NOVA) and to the construction of the required
architectural stack to provide and manage the sandboxes. At the same time, the team provided a way to
map Pilot’s components upward (in relation with the INFINITECH Reference Architecture) and downward
(in relation with Kubernetes ecosystem, which was chosen to orchestrate the execution environment). The
downward mapping was a placeholder for the imminent migration of the NOVA infrastructure, and it
clarified what the contributors expected to get.

This document has, as a primary objective, to describe how that placeholder evolves into an actual set of
application-and-orchestration-specific artifacts and how they are consumed in order to get a fully working
sandbox for each Pilot. It underlines what the main characteristics of each sandbox are, it explains if any
critical points were met and, in this case, how they are handled.

Another and no less important objective converges the analysis to the software development lifecycle and
to the software execution lifecycle through metrics collections and related analytics. Some pages will be
dedicated to the description of the tools used in order to gather both standard and domain-
specific/application-specific metrics, so that the reader will have a reference guide to get started with the
active monitoring process for maintenance and operational actions.

Once all the metrics are identified and all the tools are described, the probes will be accessed over time to
reach the third and last objective of having a big picture of the whole workload in the various system
conditions that may occur; metrics-related idle information will be an essential input for the deliverable
D6.12 – Sandboxes for FinTech and InsuranceTech Innovators - III.

1.2 Insights from other Tasks and Deliverables
WP6 has been contributing to different WPs and deliverables and in turn relies on inputs coming from
other WPs, as shown in the following figure.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 49

Figure 1 – INFINITECH Work Breakdown Structure

Within T6.5, the deliverables submitted until now fromWPs 3-4-5 have been taken into account.

In addition, the following deliverables within the WP6 are key inputs to this document:

D6.2 – Testbeds Status and Upgrades - II,

D6.5 – Tools and Techniques for Tailored Sandboxes and Management of Datasets – II.

It is worth noticing that there is a relation between this deliverable and the deliverable on the Sandboxes in
Incumbent Testbeds (D6. 7-8-9), since they share the same goals but from different perspectives.

Finally, the progress of task T6.5 (together with the other tasks in WP6) is a key driver of the INFINITECH
WP7, which is focused on the Large Pilots Operations and Stakeholders Evaluation of the proposed
Financial and Insurance Services.

1.3 Structure
The content of this document is divided into four chapters. Besides the introductory section which
highlights the objectives of the deliverable and provides the context in which this series of activities take
place, we propose a technical chapter “INFINITECH System Design for Shared Testbed” that describes, from
one side, the overall NOVA architectural stack and the cluster blueprint that generated the five Pilots’
clusters, and from the other side, a detailed description of the system monitoring tools adopted to gather
metrics in the different levels of the stack, as well as a description of those meaningful standard metrics
aimed to perform a fine-tuning of the running NOVA infrastructure and the virtual environments that are
provided in the form of Kubernetes clusters.

The third chapter is fully dedicated to the Pilots. It goes in-depth with the sandbox tailoring and concretizes
all the expected results and the configuration objects discussed in the corresponding section of the
deliverable D6.10. The chapter also introduces the relevant domain-specific metrics, explaining how they
are gathered, and elaborates a preliminary consideration according to the probes activated in the idle
condition which represent a starting point for the deductions that will be taken into account later on, after
the heavy-workload conditions will be monitored.

The final chapter contains the final thoughts and the anticipations for the next version of the deliverable.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 49

2 INFINITECH System Design for shared
testbed

2.1General system design of the shared testbed
As reported in deliverable D6.10, the Nova shared testbed is a set of hardware resources organized to host
several Pilots in a way that Pilots will not interfere each other. Each Pilot is organized as a set of
namespaces, each one implementing a use-case.

The Nova infrastructure resources has been partitioned using the same high level design used for the cloud-
hosted shared testbed, which is based on a set of Kubernetes [1] (aka K8S) clusters, one for each Pilot, each
one containing several namespaces representing use-cases, as depicted in Figure 2.

Figure 2 - NOVA Blueprint replication

Since each cluster is realized by several VMs (Virtual Machines), to speed up VMs management, we
adopted Packer [2]: an opensource tool to create VM templates, potentially for multiple platforms, with a
declarative language. With Packer, it is possible to define a static and versionable virtual machine definition,
where it is possible to specify operating system and installed software, and from which the VM image is
built without the burden of all classic manual steps necessary to create a VM, like install and configure OS.
Packer allows us to configure a single VM template in 3 files, the first is the general definition as follow:

{
"builders": [
{
"CPUs": 2,
"RAM": 2048,
"RAM_reserve_all": true,
"boot_command": [
"<tab> text ks=http://{{ .HTTPIP }}:{{ .HTTPPort }}/ks.cfg<enter><wait>"
],
"boot_order": "disk,cdrom",
"cluster": "{{user `cluster`}}",
"convert_to_template": "true",

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 49

"datastore": "{{user `datastore`}}",
"disk_controller_type": "pvscsi",
"folder": "{{user `folder`}}",
"guest_os_type": "centos7_64Guest",
"host": "{{user `host`}}",
"http_directory": "./http",
"insecure_connection": "true",
"iso_checksum": "SHA256:b79079ad71cc3c5ceb3561fff348a1b67ee37f71f4cddfec09480d4589c191d6",
"iso_urls": "https://mirror.bytemark.co.uk/centos/7.9.2009/isos/x86_64/CentOS-7-x86_64-NetInstall-2009.iso",
"network_adapters": [
{
"network": "{{user `network`}}",
"network_card": "vmxnet3"
}
],
"password": "{{user `password`}}",
"ssh_password": "{{user `ssh_password`}}",
"ssh_username": "{{user `ssh_username`}}",
"storage": [
{
"disk_size": 8192,
"disk_thin_provisioned": true
}
],
"type": "vsphere-iso",
"username": "{{user `username`}}",
"vcenter_server": "{{user `vcenter_server`}}",
"vm_name": "template_centos7"
}
],
"provisioners": [
{
"execute_command": "echo '{{user `ssh_password`}}' | sudo -S -E bash '{{.Path}}'",
"scripts": [
"script.sh"
],
"type": "shell"
}
]
}

That file is parametrized CPU, RAM and disk memory, seems fixed but can be changed during VM
instantiation, while all other parameters specified as "{{param `param`}}" ex. "{{user `username`}}", are
specified in a second file named“variable.json”:

{
"vcenter_server":"10.172.70.50",
"username":"******@vsphere.local",
"password":"******",
"datastore":"SVT_DATASTORE_01-VMS",
"folder": "/Packer/template",
"host":"infinitech-no1.vps.uninova.pt",
"cluster": "Infinitech-Uninova",
"network": "R-UNINOVA-INFINITECH-PROD",
"ssh_username": "****",
"ssh_password": "*******"

}
This file refers to NOVA vCenter, which is where the infrastructure is hosted and all other base system
configuration are located, like:

Operating System

ISO image for operating system installation

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 49

Boot order

CPU

RAM

Network configuration

Credential for SSH

Script for further image customization

One additional file is needed, and it is a bash script named “script.sh”, here are placed instructions to install
all tools needed for this configuration, in our case: Docker [2] and its prerequisites, open-vm-tools, kubectl
and bash-completion. We also replaced service chronyd with ntpd, fill hosts file with necessary entry and
reset cloud-init.

#remove old docker version
yum remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-
engine

#install docker
yum install -y yum-utils
yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
#pre-requisite docker
yum install -y device-mapper-persistent-data lvm2 perl
#docker
yum install -y docker-ce docker-ce-cli containerd.io
systemctl enable docker

#install vm-tools
yum install -y open-vm-tools

#Download the kubectl cli
curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
mv kubectl /usr/local/bin
chmod +x /usr/local/bin/kubectl

#Tab completition
yum install -y bash-completion

#Disabled chronoyd
systemctl disable chronyd
systemctl enable ntpd

#Customize hosts
echo "10.172.73.13 rancher.vps.uninova.pt">>/etc/hosts

#Reset the machine-id value. This has known to cause issues with DHCP
echo -n > /etc/machine-id

Reset any existing cloud-init state
#
cloud-init clean -s -l

This infrastructure counts several Kubernetes clusters plus one for Rancher [10] application runtime. This
cluster is the first created and we used the VM template described above.

This cluster as for Rancher recommendation [30] is composed by three nodes: each node hosts all three
main K8S functions: control-plane, etcd and worker. To create this cluster, as for all other clusters, we’ve
selected a Kubernetes distribution called RKE [4] (Rancher Kubernetes Engine), a CNCF [5] (Cloud Native
Computing Foundation) certified project that simplifies Kubernetes operation, which allows the creation of

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 49

clusters without operating system constraints by relying on compatible versions of Docker. It creates a
cluster with one command and its declarative configuration simplifies Kubernetes maintenance, enabling
versioning, simply and atomic update of infrastructure, modifying cluster definition file. In the following
example, it is depicted as a cluster configuration file extract, where the first two cluster nodes are defined.

nodes:
- address: 10.172.73.12
port: "22"
internal_address: ""
role:
- controlplane
- worker
- etcd
hostname_override: rancher01
user: automation
docker_socket: /var/run/docker.sock
ssh_key: ""
ssh_key_path: ~/.ssh/id_rsa
ssh_cert: ""
ssh_cert_path: ""
labels: {}
taints: []
- address: 10.172.73.13
port: "22"
internal_address: ""
role:
- controlplane
- worker
- etcd
… continue

On top of that K8s cluster, we installed Rancher platform via Helm [6] package manager.

Rancher (with its GUI) enables easy k8s cluster creation and maintenance. Within it we can manage all
NOVA Pilots clusters, and also Rancher K8S cluster itself, named “rancher” as you can see in Figure 3.

Figure 3 – Overview of the clusters managed by Rancher

Rancher works also as proxy for users that want to access their own cluster via kubectl, thanks to its
features of authentication and authorization. We have integrated the Rancher with the Blueprint

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 49

OpenLDAP service, in order to allow INFINITECH users to use the same credentials used to access other
INFINITECH platforms.

Moreover, to access the Rancher UI (User Interface) via HTTPS, a DNS name has been registered:
rancher.vps.uninova.pt to point to the UNINOVA firewall. The firewall converts the public IP into a private
IP. The private IP is managed by a VM based on NGINX [7] that acts as reverse proxy to forward the HTTPS
requests in round-robin manner to one of the three Rancher’s nodes: 10.172.73.12, 10.172.73.13,
10.172.73.14 where the web application is running on port 443, see Figure 4.

Figure 4 – NOVA Network

All Pilot clusters are easily created via Rancher user interface: An administrator indicates a few necessary
parameters such as number of nodes, resources of those nodes and kind of K8s function it implements and
the frameworks do the job, including managing VM hosting the nodes, see Figure 5.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 49

Figure 5 – Edit Cluster on Rancher

But before to start creating the needed clusters, Rancher needs one more configuration: “Node Template”.
A node template is a Rancher object that contains the configuration to use when provisioning nodes in a
specific provider, cloud or on-premise; in our case the provider is vSphere, as this infrastructure is hosted
on a VMware platform.

Starting from the Pilot hardware requirements (see Table 1), we made a bunch of templates that can
simplify the operation of sizing the cluster with the appropriate resources, all templates created use the
packer VM image described at the beginning of the installation, each one configured and with different
resources.

Table 1 – Pilot Requirements

Pilot\HW Requirements Cores Memory (GB) Storage (TB)

Pilot 2 4 16 0.5

Pilot 11 34 104 15.2

Pilot 12 18 64 15

Pilot 13 8 32 0.6

Pilot 14 240 180 0.5

Due to the lack of an automatic virtual machine distribution on hosts, based on resource availability, we
make copies of same node template on the different hosts: for that reason in Table 2, the complete host
name is not indicated (that should end with the number of host server that runs this image), but only
resources configured are given.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 49

Table 2 - Node Template

Name Cpus Memory (GB) Disk (GB)
packer-24vCPU-
18RAM-40GB-
host(1-3)

24 18 40

packer-6vCPU-
18RAM-40GB-
host(1-3)

6 18 40

packer-6vCPU-
8RAM-40GB-
host(1-3)

6 8 40

packer-4vCPU-
16RAM-40GB-
host(1-3)

4 16 40

packer-4vCPU-
4RAM-40GB-
host(1-3)

4 4 40

2.2Testbed monitoring tools
The standard tools to monitor a Kubernetes cluster are Prometheus [8] and Grafana [9]: the first one is the
real monitoring tool that collects and stores the metric values, while the second one is the graphic
visualization tool that allows users to represent the data in an intuitive and easy to use dashboard.

The following picture depicts the general flow in a hypothetical Kubernetes cluster:

Figure 6 – Prometheus and Grafana in a k8s cluster

As shown in the picture, the monitoring system can be summarized in three components:

Prometheus server: allows users to retrieve metrics from the Kubernetes cluster (like PODs
resources request, namespace utilization) and store them in its own key-value database.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 49

Grafana Dashboard: allows users to query the metrics retrieved from Prometheus and render them
into beautiful graphs and visualizations

Alert Manager: a Prometheus plugin that handles alerts sent by Prometheus server towards
external systems via email, slack notification etc.

In the NOVA infrastructure, the Kubernetes clusters are managed by Rancher, which is natively integrated
with Prometheus and Grafana, so in this case, it is not necessary to install and integrate the two tools
manually, but it is possible to enable them at installation time or after the cluster is created directly in the
Rancher UI.

After selecting a specific cluster, it is possible to check immediately if this feature is enabled from the
presence of the Metrics in the bottom (Cluster Metrics, etcd Metric, etc) and for the Grafana logo on the
bottom right.

Figure 7 – Cluster-specific main page

To enable or disable this feature or to modify the monitor configuration, it is possible to access the menu
Tools and then select Monitoring to reach the monitor configuration page:

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 49

Figure 8 – Cluster-specific Monitoring configuration page

Here, it is possible to choose the Data Retention time, the size of the persistent volume where Prometheus
will store historical data and resource limit of the Promethus-Grafana PODs in terms of CPU and Memory.

Referring to Figure 7, by expanding one item (for example Cluster Metrics), it is possible to see the
summary of the related metrics on the same page, with Rancher look and feel. Hovering the mouse on one
graph, the appropriate values are shown as depicted in the CPU utilization section in Figure 9:

Figure 9 -– Monitoring Metrics Summary

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 49

The data visualization shown inside Rancher can be also accessed using the Grafana tool, clicking on the
Grafana logos on the right of the Figure 7:

Figure 10 – Grafana Data Representation

In this way, it is possible to interact with Grafana that is a standard de facto monitoring and data
visualization software, shown in Figure 10. In the Rancher visualization as well as in Grafana, it is possible to
explode the metric categories and hover the mouse on the graphs to access the data values (see Figure 11).

Figure 11 – Grafana-specific Values

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 49

2.3Testbed metrics collection
Numerous metrics collected by Prometheus are provided by the Kubernetes metric-server. In the following
table, the most important metrics accessible by Rancher are shown:

Table 3 – Metrics collection

Category Metric

Cluster Metrics

CPU Utilization
Load Average
Memory Utilization
Disk Utilization
Disk i/O
Network Packets
Network I/O

Etcd Metrics

GRPC Client Traffic
DB Size
Active Streams
Raft Proposals
RPC Rate
Disk Sync Duration

Kubernetes Components
Metrics

API Server Request Rate
Controller Manager Queue
Depth
Scheduling Failed Pods
Ingress Controller Connections

For further information about Rancher metrics, it is possible to refer to [4].

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 49

3 Sandboxes for FinTech and InsuranceTech
innovators

3.1Pilot#2 – Real-time risk assessment in Investment
Banking

The Pilot#2 implements a real-time risk assessment and monitoring procedure for two standard risk metrics:
VaR (Value-at-Risk) and ES (Expected Shortfall). The main outcome is the measurement of market risks of
Forex portfolios. In addition, the Pilot will evaluate what-if scenarios allowing pre-trade analysis, i.e.,
estimating changes in risk measures before a new trading position is entered. Moreover, the Pilot will
implement sentiment analysis in financial and economic news providing complementary risk information to
traders and portfolio managers. While VaR and ES are quantitative risk measures based on numerical price
data, the market sentiment will be derived from text data applying natural language processing. An
overview of Pilot #2 is given in Figure 12.

Figure 12 – Pilot #2 Overview

In the overall architecture, there can be identified three layers of building blocks that consists of the overall
solution:

Data Management layer: Data from the real-time market database and the news feed databases is
injected into the Data Management layer through a stream processing component which is capable
of handling large volumes of data that feature very high ingestion. The real-time data is
concatenated with the historical data on the fly and at the same time is appropriately transformed
in data windows, creating segments of time series.

Data Processing and Architecture layer: In order to update risk measurement, instantly when a new
trading position takes place, data from the Electronic Order Platform is injected directly to Data
Processing and Architecture layer. Consequently, the updated portfolio positions along with the
latest market values are taken into account towards calculating the correlation matrix. The latter is
required in order to calculate VaR and ES. Furthermore, this layer is responsible to generate the
various scenarios through Monte Carlo simulations which are also required for the risk estimation.

Analytics layer: This layer receives inputs from the Data Management and Processing layers to
estimate VaR and ES, leveraging both statistical and deep learning methods. Moreover, Analytics

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 49

layer receives input from the Pilot’s user interface in order to provide the what-if-analysis feature
which is also using the developed risk assessment models.

3.1.1 NOVA sandbox description

The current version of Pilot #2 consists of the following four distinct components:

AI for VaR Prediction implements building blocks from both Data Processing and Analytics layers.

UI based on VaR implements the what-if-analysis feature while also serves as the Pilot’s user
interface.

infinistore is the main component of the data management layer serving as a central data store,
providing the online aggregates feature.

Kafka is also part of the data management layer, which enables the injection of high-volume data
streams (i.e., tick data) to the Infinistore.

The following Kubernetes elements define the Pilot’s deployment in the dedicated sandbox:

statefullset.apps/infinistore: this is the stateful set that contains the INFINISTORE data
management system. As the INFINISTORE is a stateful component, a stateful set is considered the
correct choice instead of a deployment config. The stateful sets preserve their internal IPs when a
pod is being restarted. At this phase of the project and for the given data load, the requirements
for computational power are 4 vCPUs with 8 GBs of memory.

service/infinistore-service: this service element allows the connectivity of the INFINISTORE stateful
set with other elements inside the sandbox.

persistent.volume.claim/infinistore-datasets-pvc: this is the persistent volume claim that is needed
to persistently store the ingested data of the datastore so that it can be available every time the
datastore restarts. At this phase of the project, the requirement is for 50 GBs of storage to validate
that the integrated solution is working with a medium data load.

statefulset.apps/lx-kafka: this is the stateful set that contains the LX-Kafka queue. Similar to
INFINISTORE, a stateful set is used to preserve the IPs of Kafka's internal components. To serve the
current version of Pilot #2, 2vCPUs with 4 GBs of memory are required.

service/lx-kafka-np: this is a node port that allows connectivity with components that are external
to the sandbox via the internet. Thus, this service enables a secure connection, which is required to
ingest data from outside of the sandbox to Kafka. As a result, this node port exposes the defined
port of LX-Kafka to the internet.

deployment.apps/ai-model-for-var-prediction: this is deployment config that contains the ai-
model-for-var-prediction component. The latter, being a REST API, does not need to persist state.
Thus, a deployment controller has opted, which is lighter than a stateful set. Currently, the
requirements for computational power are 2 vCPUs with 2 GBs of memory.

service/ai-model-for-var-prediction-np: this is a node port service that allows external (outside of
the sandbox) connectivity to the ai-model-for-var-prediction deployment. This connectivity is
required in order to post new trading positions from the bank-side to the ai-model-for-var-
prediction deployment.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 49

deployment.apps/ui-risk-assessment-based-on-var: Similar to deployment.apps/ai-model-for-var-
prediction, this is also a deployment config containing the ui-risk-assessment-based-on-var
component. The requirements for computational power of this component are 2 vCPUs with 2 GBs
of memory.

service/ui-risk-assessment-based-on-var-np: this is also a node port service that allows external
(outside of the sandbox) connectivity to the ui-risk-assessment-based-on-var deployment. This
connectivity is required to enable access to the Pilot’s UI, which is deployed in the sandbox via the
internet.

3.1.2 Second-stage components deployment on NOVA

Each of the aforementioned Pilot’s components is deployed in a dedicated node. As a result, the deployed
sandbox consists of the following K8s pods:

pod/infinistore, which instantiates the stateful set of INFINSTORE

pod/lx-kafka, which instantiates the stateful set of KAFKA

pod/ai-model-for-var-prediction, which instantiates the deployment set of ai-model-for-var-
prediction

pod/ui-risk-assessment-based-on-var, which instantiates the deployment set of ui-risk-assessment-
based-on-var

As mentioned in the previous subsection, for the components of Pilot #2 to be able to reach each other,
there has been defined services that expose the corresponding ports. For instance, the following code
snippet of the ai-model-for-var-prediction - deployment depicts the port that needs to be reachable:

spec:
containers:
- env:
- name: DATASTORE_HOST
value: infinistore-service

image: harbor.infinitech-h2020.eu/analytics/ai-model-for-var-prediction: latest
name: ai-model-for-var-prediction
ports:
- containerPort: 5000

Moreover, the respective node port has been defined that exposes the specific port (the port where the API
listens to) to external components, as depicted in the following code snippet:

spec:
type: NodePort
selector:
app: ai-model-for-var-prediction
ports:
- name: "5000"
protocol: TCP
port: 5000
targetPort: 5000
nodePort: 30204

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 49

Here we can see that the port where the ai-model-for-var-prediction API listens to, the 5000, is being
mapped to a target port 30204. That means that external components need to make a HTTPS call to the
external IP of the Kubernetes cluster on port 30204. Then the Kubernetes cluster will forward this
connection to the specific pod, the ai-model-for-var-prediction as defined by the appropriate selector in the
code snippet, mapped to its 5000 port that the pod has exposed internally.

The same approach is utilized for the configuration of the ui-risk-assessment-based-on-var component.

3.1.3 Metrics in idle condition

The following figures (Figure 13 and Figure 14) show the current resources utilization by Pilot #2 in idle
conditions.

Figure 13 – Resources utilization by Pilot#2

Figure 14 – Pilot#2 nodes list

3.2Pilot#11 – Personalized insurance products based on
IoT connected vehicles

Pilot#11 belongs to the Cluster 4, intended to exploit IoT infrastructures and real-world data to enhance
risk profiling methodologies by applying AI technologies to offer customised insurance products and avoid
fraud. In particular, as presented in D7.1 and D7.12 and expanded in D6.10, Pilot#11 relies on an IoT
connected vehicles infrastructure and an urban traffic simulator to capture, analyse and synthesise

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 49

technical datasets from connected cars. This will be merged with other relevant data sources (e.g. traffic
alerts and weather information) to develop two AI powered services oriented to car insurance business:
Pay as you Drive, to customise prices by classifying the driver by the way he/she drives; and Fraud
Detection to identify the actual driver and driving conditions within a traffic incident.

From the overall approach of the Pilot presented in D7.12, the second stage of its sandbox deployment
corresponds to the data gathering, standardisation, homogenisation, and presentation components, as
shown in Figure 15, leaving the AI models and AI framework for the final stage.

Figure 15 – Pilot #11 data gathering & management

This infrastructure is covered by the Smart Fleet platform and the Urban Traffic Simulator that will provide
the required datasets for the exploitation components.

3.2.1 NOVA sandbox description

Figure 16 presents the specific components that build the Smart Fleet framework which is the core of the
data gathering and management layer of the Pilot #11. These components are deployed in the NOVA
testbed according to the INFINITECH Kubernetes-based approach.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 49

Figure 16 – Atos’ Smart Fleet core components

The Atos Smart Fleet framework is based on FIWARE architecture and its backbone is composed by:

the NGSI Context broker, which manages all the information coming from the integrated data
sources according to the selected FIWARE Data models [11]. The version used for this deployment
customises the Orion Context broker V2.2 [12] which supports and provides a NGSIv2 [13] interface
to query/retrieve context information.

An instance of a CrateDB open-source SQL database to support all historical context information
and to implement an SQL RESTful interface that provides with classified and homogenised datasets
to the AI framework, whilst supports other data analytics and presentation tools.

The Quantum Leap [14] service that, on one hand connects the Context Broker with the Database
for gathered data persistence and, on the other, it implements an NGSI-Time Series Data Base
(NGSI-TSBD) [15] RESTful API to provide time-related historical information

Connected to this FIWARE backbone, and complementing this baseline, there are also deployed:

an instance of Grafana, a dashboard monitoring tool that allows the end user to create their own
visualizations of all the gathered data and provides a web-based user interface to visualise and
share all of them

an API Gateway (Kong [16]) to concentrate the access for all the APIs that compose the data access
and data uploads for the ATOS Smart Fleet framework

The Pilot #11 sandbox deployment includes a customised instance of the SUMO (Simulator of Urban
Mobility) [17] with several embedded city scenarios that provides, through NGSI API and according FIWARE
Vehicles data model, on demand simulated data from connected vehicles.

The proper performance of Pilot #11 also requires from specific NGSI adaptors (also known as injectors) to
capture information from real-time sources (vehicles, weather, and alerts). The NOVA sandbox will include
the weather injector as an open-source code that deals with open data sets from the Spanish
Meteorological Agency (AEMET) [18]. Injectors for connected vehicles and traffic alerts are specific
developments for CTAG framework and will remain on CTAG premises, but the reposted data will be
included in sandbox databases.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 49

This sandbox will also interact with the Anonymization tool provided by Gradiant and be deployed as part
of the INFINITECH technologies.

With these deployed components, Pilot#11’s NOVA sandbox (second stage) will provide end users with
connected vehicles, weather information and traffic alerts generated within the Pilot context, as well as
with a tool to simulate new traffic information and collect synthetic vehicles data.

3.2.2 Second-stage components deployment on NOVA

According to the description presented in the previous section, the resources deployed in NOVA
Kubernetes infrastructure are summarised in Figure 17.

Figure 17 – Pilot #11 application topology on Kubernetes

Grouped as the aforementioned components, the deployed Kubernetes assets supporting each of them are:

Context Broker:

o fiware/orion/orion-cb-deployment.yaml: deploys the FIWARE Orion Context Broker
(fiware/orion:2.5.2) and configures the container port to support the NGSIv2 API

o fiware/orion/orion-cb-service: sets and exposes (internally) the NGSIv2 API

o fiware/mongodb/mongodb-cb-pvc.yaml: PersistentVolumeClaim for the Context
Information storage

o fiware/mongodb/mongodb-cb-deployment.yaml: deploys the MongoDB database to
support Orion Context Broker

o fiware/mongodb/mongodb-cb-service.yaml: service to expose the MongoDB port and get
connected with the Orion CB.

Quantum Leap:

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 49

o fiware/quantum/quantumleap-deployment.yaml: deploys the FIWARE Quantum Leap
component (orchestracities/quantumleap:0.8.1) and configures the container port to
support the NGSI-TSDB API

o fiware/quantum/quantumleap-service: sets and exposes (internally) the NGSI-TSDB API

o fiware/quantum/quantumleap-configmap.yaml: configures Quantum Leap to connect to
the CrateDB instance

Crate DB:

o fiware/cratedb/crate-db-deployment.yaml: deploys the CrateDB instance (crate:4.1.2) and
configures the container ports to support CRUD operations

o fiware/cratedb/crate-db-service: set and expose (internally) the CrateDB ports to configure
database accesses

o fiware/cratedb/crate-db-pvc.yaml: PersistentVolumeClaim for the historical dataset
storage

API Gateway

o access/kong/kong-deployment.yaml: deploys the modified Kong instance
(atossmartfleet/kong_oicd:1.0) and configures the container ports to support management
and access interfaces

o access/kong/kong-service: set and expose (internally) the kong’s ports for its APIs

o access/kong/kong-manager-ingress: sets the external access for the kong management API

o access/kong/kong-smartfleet-ingress: sets the external access for all the endpoints
configured in kong to access the services (APIs) supported by the SmartFleet platform
(NGSIv2, NGSI-TSBD, SQL and SUMO API)

o access/postgreSQL/postgres-db-pvc.yaml: PersistentVolumeClaim for the API Gateway
configuration persistence

o access/postgreSQL/postgres-deployment.yaml: deploys the PostgreSQL database for Kong
persistance

o access/postgreSQL/postgres-service.yaml: creates and exposes the PostgreSQL database
service

o Simulator for Urban Mobility

o simulator-urban-mobility/sumoserver-configmap.yaml: configures the SUMO service to
work as an NGSI data injector

o simulator-urban-mobility/sumoserver-deployment.yaml: deploys the SUMO server
customised to integrate with the Smart Fleet framework

o simulator-urban-mobility/sumoserver-service.yaml: exposes the API to manage the SUMO
simulations

At the time of writing these lines, the injector to import AEMET weather datasets according NGSI format
and its corresponding K8s files are under development.

In addition, this Pilot#11 deployment also feeds the Anonymisation component3 developed in T3.5 by GRAD,
which in turn captures raw data from routes in NGSI format to anonymise these datasets. This will be later
used by the AI models to evaluate different data anonymisation levels and its impact on the AI assisted
drivers’ classification.

3 D3.13 Data Governance Framework and Tools – II

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 49

3.2.3 Metrics in idle condition

The following figures show a snapshot of the standard metrics in idle conditions of Pilot #11 Kubernetes
cluster.

Figure 18 – Resources utilization by Pilot #11

Figure 19 – Pilot #11 nodes list

3.3Pilot#12 – Real World Data for Novel Health-Insurance
products

Personalization of health insurance products needs to be based on continuous risk assessment of the
individual, since lifestyle and behaviour cannot be assessed at one instance in time; they involve people’s
habits and their continuous change. Health insurance products which employing continuous assessment of
customers’ lifestyle and behaviour are dynamically personalized.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 49

Behavioural assessments, much like their clinical counterparts, rely on data. For behaviour, the data
collection needs to be continuous, facilitated by software tools for the collection of information capturing
the important aspects of lifestyle and behaviour. In the Pilot #12 of INFINITECH, insurance experts define
the data to be collected, and the Healthentia e-Clinical platform facilitates the collection. Continuous risk
assessment services are provided to health insurance professionals by training machine learning (ML)
prediction models for the required health parameters.

Pilot #12 of INFINITECH focuses on health insurance and risk analysis by developing two AI-powered
services, risk assessment and fraud detection: The risk assessment service allows the insurance company to
adapt prices by classifying individuals according to their lifestyle. The fraud detection service is based on
outlier analysis for data, but mainly on the use of a virtual coach to advise individuals in their lifestyle
choices, aiming at improving their health but also in persuading them to use the system correctly. These
two services rely on a model of health outlook trained on the collected data and used in the provision of
the services.

An overview of Pilot #12 is given in Figure 20. It comprises two systems: The Pilot #12 testbed, built within
the INFINITECH project and deployed on the NOVA sandbox. The Healthentia e-Clinical platform, provided
by Innovation Sprint. The data is collected by Healthentia. The Pilot #12 testbed facilitates secure and
privacy-preserving offline model training. The trained model is utilized for the risk assessment and the
lifestyle coach online ML services of Healthentia, and the results are visualized by the dashboards of the
Healthentia portal web app.

Figure 20 – INFINITECH Pilot #12 system comprising Healthentia and the Pilot #12 testbed

3.3.1 NOVA sandbox description

Pilot #12 is split into two parts, the online that is handled within the Healthentia platform, and the offline
model training that is deployed on the NOVA sandbox. The components deployed on the sandbox are:

Data Collection Tool (UBITECH): this tool continuously queries the Healthentia platform for new
data and stores it in the miniIO internal storage.

MinIO (UBITECH): This is a single MinIO instance used as an internal only storage (not exposed to
the outer world in any way) that will maintain the raw data from the Healthentia platform, as it was
received by the Data Collection Tool.

Regulatory Compliance Tools (ATOS): The Data Protection Orchestrator is invoked to start a new
model training process. It contacts the Data Collection Tool to retrieve the list of files in miniIO that

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 49

should be included in the training process, and then forwards this information to the
Anonymization Tool.

Anonymization Tool (GRAD): The anonymizer loads the designated data from the MinIO and
performs different levels of anonymization. It then stores the results in LeanXcale.

Infinistore (LeanXcale): This is the data repository for model training. Data anonymized at different
levels is stored here.

Model Trainer (Innovation Sprint): This is a collection of Python scripts and classes handling: (a)
training, validation and testing dataset creation for different input attributes’ and output
outcomes’ scenarios, (b) model training, (c) model evaluation and (d) model exporting to
Healthentia.

The components and their interactions are depicted in Figure 21.

Figure 21 – INFINITECH Pilot #12 testbed components deployed on NOVA sandbox

3.3.2 Second stage components deployment on NOVA

The Data Collection Tool and infinistore (LeanXcale) are already deployed on the NOVA sandbox. For details
about how to deploy infinistore instances, please refer to the section 3.4.2 of this document.

MinIO that is used as an internal storage, as described in section 3.33.3.1, is deployed as a stateful set in
a standalone mode (not distributed/clustered mode). It utilizes a persistent volume claim of the size of 1 GB
and exposes internally a port, so that other services of the deployment can communicate with it.

The definition of the persistent volume is included in the following snippet:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: infinitech-data-checkin-minio-data1-1
spec:
accessModes:
- ReadWriteOnce
storageClassName: standard-thin
resources:
requests:
storage: 1Gi

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 49

Furthermore, the service definition responsible for internally exposing the required port is the following:
apiVersion: v1
kind: Service
metadata:
name: minio-1
labels:
app: minio-1

spec:
ports:
- name: "9000"
port: 9000
targetPort: 9000

selector:
app: minio-1

Finally, the stateful set definition that creates the single MinIO pod is depicted below:
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: minio-1
labels:
app: minio-1

spec:
serviceName: minio-1
replicas: 1
selector:
matchLabels:
app: minio-1

updateStrategy:
type: RollingUpdate
podManagementPolicy: OrderedReady
template:
metadata:
labels:
app: minio-1

spec:
containers:
- args:
- server
- /data
env:
- name: MINIO_ROOT_USER
valueFrom:
configMapKeyRef:
key: MINIO_ROOT_USER
name: env-minio-env

- name: MINIO_ROOT_PASSWORD
valueFrom:
configMapKeyRef:
key: MINIO_ROOT_PASSWORD
name: env-minio-env

image: minio/minio:RELEASE.2021-06-17T00-10-46Z
livenessProbe:
exec:
command:
- curl
- -f
- http://localhost:9000/minio/health/live

failureThreshold: 3
periodSeconds: 30
timeoutSeconds: 20
name: infinitech-data-checkin-minio-1

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 49

ports:
- containerPort: 9000
resources: {}
volumeMounts:
- mountPath: /data
name: infinitech-data-checkin-minio-data1-1

restartPolicy: Always
volumes:
- name: infinitech-data-checkin-minio-data1-1
persistentVolumeClaim:
claimName: infinitech-data-checkin-minio-data1-1

For the installation of the Data Collection Tool microservice, the Deployment option of Kubernetes was
chosen. Unlike stateful sets which are more oriented for stateful objects like databases, deployments are
oriented for stateless objects, such as microservices. A persistent volume of 100 MB for storing the tool’s
logs is mounted to the created pod and additionally a configuration for exposing internally the port of the
pod took place, similarly to the one of MinIO.

The snippet of the Data Collection Tool’s persistent volume is the following:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: infinitech-data-checkin-handler-logs
spec:
accessModes:
- ReadWriteOnce
storageClassName: standard-thin
resources:
requests:
storage: 100Mi

The related service definition that was used for exposing the necessary port is:
apiVersion: v1
kind: Service
metadata:
name: data-handler
labels:
app: data-handler

spec:
ports:
- name: "8080"
port: 8080

selector:
app: data-handler

Finally, the deployment definition which starts the necessary pod for the Data Collection Tool is depicted
below:
apiVersion: apps/v1
kind: Deployment
metadata:
name: data-handler
spec:
replicas: 1
selector:
matchLabels:
app: data-handler

strategy:

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 49

type: Recreate
template:
metadata:
labels:
app: data-handler

spec:
containers:
- args:
- bash
- -c
- sleep 40 && java -Xms256M -Xmx2048M -jar data-handler.jar
env:
- name: CONSUL_DISCOVERY_HOSTNAME
valueFrom:
configMapKeyRef:
key: CONSUL_DISCOVERY_HOSTNAME
name: env-handler-env

- name: CONSUL_HOST
valueFrom:
configMapKeyRef:
key: CONSUL_HOST
name: env-handler-env

- name: CONSUL_PORT
valueFrom:
configMapKeyRef:
key: CONSUL_PORT
name: env-handler-env

- name: CRON_HEALTHENTIA
valueFrom:
configMapKeyRef:
key: CRON_HEALTHENTIA
name: env-handler-env

- name: KAFKA_BOOTSTRAP_SERVERS
valueFrom:
configMapKeyRef:
key: KAFKA_BOOTSTRAP_SERVERS
name: env-handler-env

- name: KAFKA_CONSUMER_CONCURRENCY
valueFrom:
configMapKeyRef:
key: KAFKA_CONSUMER_CONCURRENCY
name: env-handler-env

- name: KAFKA_CONSUMER_GROUP_ID
valueFrom:
configMapKeyRef:
key: KAFKA_CONSUMER_GROUP_ID
name: env-handler-env

- name: KAFKA_LISTENER_AUTO_STARTUP
valueFrom:
configMapKeyRef:
key: KAFKA_LISTENER_AUTO_STARTUP
name: env-handler-env

- name: KAFKA_MINIO_TOPIC
valueFrom:
configMapKeyRef:
key: KAFKA_MINIO_TOPIC
name: env-handler-env

- name: MINIO_ACCESS_KEY
valueFrom:
configMapKeyRef:
key: MINIO_ACCESS_KEY
name: env-handler-env

- name: MINIO_ENDPOINT
valueFrom:

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 49

configMapKeyRef:
key: MINIO_ENDPOINT
name: env-handler-env

- name: MINIO_SECRET_KEY
valueFrom:
configMapKeyRef:
key: MINIO_SECRET_KEY
name: env-handler-env

- name: MINIO_WORKFLOW_BUCKET
valueFrom:
configMapKeyRef:
key: MINIO_WORKFLOW_BUCKET
name: env-handler-env

- name: MONGODB_AUTHENTICATION_DATABASE
valueFrom:
configMapKeyRef:
key: MONGODB_AUTHENTICATION_DATABASE
name: env-handler-env

- name: MONGODB_DATABASE
valueFrom:
configMapKeyRef:
key: MONGODB_DATABASE
name: env-handler-env

- name: MONGODB_HOST
valueFrom:
configMapKeyRef:
key: MONGODB_HOST
name: env-handler-env

- name: MONGODB_PASSWORD
valueFrom:
configMapKeyRef:
key: MONGODB_PASSWORD
name: env-handler-env

- name: MONGODB_PORT
valueFrom:
configMapKeyRef:
key: MONGODB_PORT
name: env-handler-env

- name: MONGODB_USERNAME
valueFrom:
configMapKeyRef:
key: MONGODB_USERNAME
name: env-handler-env

- name: SPRING_PROFILES_ACTIVE
valueFrom:
configMapKeyRef:
key: SPRING_PROFILES_ACTIVE
name: env-handler-env

- name: TZ
valueFrom:
configMapKeyRef:
key: TZ
name: env-handler-env

image: harbor.infinitech-h2020.eu/data-management/data-handler:0.12.5
name: infinitech-data-checkin-handler
ports:
- containerPort: 8080

restartPolicy: Always
volumes:
- name: infinitech-data-checkin-handler-logs
persistentVolumeClaim:
claimName: infinitech-data-checkin-handler-logs

imagePullSecrets:
- name: registrysecret

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 37 of 49

As we can see, the configuration is held by the env-handler-env configmap, which is consumed by the pod
definition through the env keyword.

The Regulatory Compliance Tools and the Anonymizer are very close to finalization and deployment. The
Model Trainer is still being developed, and its deployment is scheduled for the end of Fall 2021.

3.3.3 Metrics in idle condition

The goal of the deployment on the NOVA sandbox is to provide an offline model training sandbox
independent of the online system. This is important in real deployments, since the online system requires
medium level resources all the time, while the model training system requires a lot of resources
sporadically.

Since the Pilot #12 testbed on the NOVA sandbox is meant for offline operation, metrics on resource
consumption are not so important. Also, metrics on model quality are irrelevant (the data quality and the
model training algorithms are not controlled by the testbed). The metrics of interest have to do with the
comparison of the model quality as the anonymization strength varies for the same input attributes and
predicted outcomes.

3.4Pilot #13 – Alternative/automated insurance risk
selection -– product recommendation for SME

Pilot #13 will monitor risk changes, so it will be able to radically improve the risk management that
companies (SMEs) face in the development of their daily activity. The indicators will be based on
information from each of the companies coming from online sources that will give information about the
digital presence and activity of those companies like activity, business volume, participation in social
networks, number of employees, use of e-commerce, payment platform etc. The company to be analysed
does not need to provide all of that information, as the developed tools are in charge of searching and
gathering information related to the target company from many sources. In this way, risk profiles of each
of the companies analysed will be generated, allowing to customize the product offering and to make a
permanent automated risk management. But this is not the only usage of data; insurance companies will
use these information sources, resulting -n better customized products. An overview of Pilot #13 is given in
Figure 22.

Figure 22 – Pilot#13 Overview

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 38 of 49

In the overall architecture, there can be identified three layers of building blocks that consists of the overall
solution:

Data Acquisition Layer: This layer is used to obtain data from the information sources which are
related with the digital presence and activities of the costumers, using automations developed by
WEA. It is considered external to the INFINITECH sandbox and will feed the latter with the
aggregated information after the initial pre-processing and preparation of the data.

Data Management Layer: This layer is used to store the data coming from the previous layer and
allow for their efficient processing. It will make use of INFINITECH components developed in the
project, and more precisely the INFINISTORE which includes the HTAP Data store along with its
extensions with the polyglot engine.

Analytics Layer: This layer contains the AI algorithms and analytics that make use of the data
available by the data management layer. These AI analytics will be developed by WEA and will be
Pilot-specific, solving the needs of the Pilot by exploiting the technologies provided by INFINITECH
for efficient data processing of data coming from a variety of heterogeneous resources. They will
be hosted inside the WeAnalyze platform external to the deployed sandbox.

Visualization Layer: This layer contains the REST endpoints and visualization components that
enable the end-users to see the results of the analysis via a User Interface, of by importing them to
their own applications using the REST APIs. It will consume the results of the analytics layer which
will be deployed in the premises of WEA, and therefore, there is no need for the components of
this layer to be hosted inside the sandbox deployed in the NOVA infrastructure.

3.4.1 NOVA sandbox description

The integrated solution for Pilot #13 consists of several components that are related with the four different
layers of the overall architecture, however, as it has been mentioned, only the technological building blocks
that are related with the data management layer will be part of the INFINITECH sandbox, which will be
deployed in the NOVA testbed. All other architectural components are considered external to the sandbox
and will be hosted inside the Pilot premises or, in case of the data acquisition layer, directly to the source of
the data.

As it has been described in the previous version of this deliverable (D6.10), the Pilot #13 sandbox will
contain the INFINISTORE technological component. Therefore, the sandbox is defined by the following
Kubernetes elements:

statefullset.apps/infinistore: This is the stateful set that contains the INFINISTORE data
management system. As the INFINISTORE is a stateful component, a stateful set is considered the
correct choice instead of a deployment config, due to the fact that the stateful sets preserve their
internal IPs when a pod is being restarted. At this phase of the project and for the given data load,
the requirement for computational power is 4 vCPUs with 16 GBs of memory, while the minimum
requirement for a successful deployment is 2 vCPUs and 8 GBs of memory.

service/infinistore-service: This is a service element that allows the connectivity of the INFINISTORE
stateful set with other elements inside the sandbox. Even if the sandbox of Pilot #13 contains only
the INFINISTORE, this service is needed for all internal components to be able to reach each other.

service/infinistore-np: This is a node port that allows the connectivity with components that are
external to the sandbox via the internet. The Pilot #13 integrated solution consists of several layers
like the visualization, analytics, and data acquisition, to be able to connect to the INFINISTORE that
lies inside the deployed sandbox. As a result, this node port exposes the defined ports of the
INFINISTORE to the internet.

perstistent.volume.claim/infinistore-datasets-pvc: This is the persistent volume claim that is
needed to persistently store the ingested data of the datastore, so that it can be available every

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 39 of 49

time the datastore restarts. At this phase of the project, the requirement is for 100 GBs of storage,
to validate that the integrated solution is working with a medium data load.

3.4.2 Second-stage components deployment on NOVA

From the description of the sandbox for Pilot #13 that has been provided in the previous subsection, it is
evident that after deployment and during the runtime, there will be pods that are only related to the
stateful set that corresponds to INFINISTORE, and they would need to be accessed from external
components. At this phase of the project, the main focus is the development and validation of the overall
integrated solution of Pilot #13, without stressing the solution with intense data load. As a result, the
deployment of the INFINISTORE will be in an all-in-one fashion. This means that all internal components of
the INFINISTORE itself have been deployed in a single node. As a result, the deployed sandbox consists of a
single pod, which instantiates the stateful set of INFINSTORE:

pod/infinistore-0: This is the pod that contains all internal components of INFINISTORE.

As mentioned in the previous subsection, for the components of INFINISTORE to be able to reach each
other, there has been defined a service that exposes the corresponding ports. The following code snippet
of the infinistore-service depicts the ports that need to be reachable:

spec:
ports:
- name: "2181"
port: 2181
targetPort: 2181
- name: "1529"
port: 1529
targetPort: 1529
- name: "9876"
port: 9876
targetPort: 9876
- name: "9992"
port: 9992
targetPort: 9992
- name: "14400"
port: 14400
targetPort: 14400
- name: "9800"
port: 9800
targetPort: 9800

selector:
app: infinistore

Most of these ports are intended to be reached only by the internal components that consist of the Pilot
#13 sandbox. However, another requirement is for the INFINISTORE to be reachable from external
components. Therefore, a node port has been defined that exposes only specific ports (the port where the
query engine listens to) to external components, as depicted in the following code snippet:

spec:
type: NodePort
selector:
app: infinistore
ports:
- name: "1529"
protocol: TCP

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 40 of 49

port: 1529
targetPort: 1529
nodePort: 31301

Here, we can see that the port where the query engine listens to, its default is 1529, is being mapped to the
target port 31301. That means that external components need to open a JDBC connection to the external IP
of the Kubernetes cluster on the port 31301. Then the Kubernetes cluster will forward this connection to
the specific pod, the infinistore as defined by the appropriate selector in the code snippet, mapped to its
1529 that the pod has exposed internally.

Last but not least, the internal components of INFINISTORE needs to connect themselves, therefore, they
would need the corresponding hostname. As this is being given during the deployment phase and cannot
be known a priori, an environment variable needs to be passed, giving to it the value of the service that
exposes the corresponding ports, as it can be depicted in the following code snippet of the INFINISTORE
stateful set:

spec:
serviceName: infinistore-service
spec:
- containers:
- image: harbor.infinitech-h2020.eu/data-management/infinistore:latest
name: infinistore
ports:
- containerPort: 2181
- containerPort: 1529
- containerPort: 9876
- containerPort: 9992
- containerPort: 14400
- containerPort: 9800

volumes:
- name: infinistore-datasets-storage
persistentVolumeClaim:
claimName: infinistore-datasets-pvc
volumeMounts:
- name: infinistore-datasets-storage
mountPath: /datasets

env:
- name: USEIP
value: "yes"
- name: KVPEXTERNALIP
value: "infinistore-service!9800"

In this code snippet, we can see that the environment variable KVPEXTERNALIP is given the hostname and
port, where the hostname is the one that matches the serviceName that is the name of the service that
allows for network connectivity inside the sandbox. It can be also depicted that there is the definition of the
persistent volume claim that was described earlier, that will be mounted under the /datasets folder of the
pod, so that the INFINISTORE can persistently store its data there.

3.4.3 Metrics in idle condition

Pilot #13 cluster standard metrics in idle condition result as follows:

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 41 of 49

Figure 23 – Resources utilization by Pilot#13

Figure 24 – Pilot#13 nodes list

3.5Pilot#14 – Big Data and IoT for the Agricultural
Insurance Industry

AgroApps is developing the entire infrastructure for the Pilot #14 data products, based on the reference
architecture starting from data collection from different sources, over processing and analytics, to user
interface & data visualization. The ongoing development of the service module is based on scientific
research in the field of agricultural insurance, climate & weather risk modelling and the most recent
evolutions, in the area of remote sensing technologies.

3.5.1 NOVA sandbox description

AgroApps’ Weather Intelligence engine as described in previous deliverable (see D6.10) is the only set of
software hosted on the NOVA testbed due to an extrinsic constraint. The instances of AgroApps Weather
Engine are launched as Statefulsets while all the other components will only have Kubernetes Services of
kind ExternalName. These services, initialized into Pilot #14’s namespace, will work as network references
to AgroApp’s managed premises, and allow every sandbox module to deliver requests and receive
responses from the remote infrastructure. For the Pilot #14 and the weather service, 12 nodes with 244
cores and 177 GB RAM are utilized on the Kubernetes Cluster.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 42 of 49

3.5.2 Second-stage components deployment on NOVA

The Weather Intelligence service provided by AGROAPPS in the framework of INFINITECH is produced by
operating the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction
model. It consists of a dynamic Eulerian kernel (ARW), subroutines for pre-processing static geographical
data and dynamic atmospheric fields, to determine the initial condition and lateral boundary conditions of
the integration domains, as well as subroutines for post-processing the forecast data.

The operational workflow, which is depicted in Figure 25, employs two docker images:

1. wrf_all_user, which contain geogrid.exe, ungrib.exe, metgrid.exe, real.exe and wrf.exe

2. dtc-upp, which contains unipost.exe

The flowchart depicts the volumes/external data used by the model and mainly refers to atmospheric fields
of analysis and forecasts from other numerical weather forecasting models, the system of pre-treatment of
these data and their interference with the horizontal and vertical grid of the model. The ARW kernel of the
forecasting models solves the primitive equations and integrates in time the atmospheric circulation. At
the last level, the post-processing of the predicted atmospheric fields takes place.

Figure 25 – Flowchart of the WRF-ARW modelling system.

AGROAPPS’s deployed numerical weather prediction system consists of 3 basic elements:

1. The pre-processing part of the modelling system: This is a 3-step process that includes:

a. geogrid.exe: Defines the integration domains and interpolates the static terrestrial data to
the model grids. Terrestrial data are included with 20 categories of land use by the
Moderate Resolution Imaging Spectroradiometer (MODIS) while terrain is defined by the
U.S. Geological Survey (USGS) topographic maps. In areas where CORINE data are not
available, the model uses data from the existing WRF land use database, USGS 1997 [19]
(see Table 4). High spatial resolution SRTM [20] and SoilGrids [21] data are used to
determine topography and soil mechanical properties, respectively.

Table 4 – Grouping and matching CORINE land use classes to USGS classes

CORINE
Code Category Description USGS

Code USGS Category Description

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 43 of 49

CORINE
Code Category Description USGS

Code USGS Category Description

11 Urban 1 Urban and Built-Up Land

12 Non-Irrigated Arable Land 2 Dryland Cropland and Pasture

13 Permanently Irrigated Land 3
Irrigated Cropland and Pasture

14 Rice Fields 3

15 Vineyards 6
Crops/Wood mosaic

16 Fruit Trees And Berry Plantations 6

17 Olive Growes 6

18 Pastures 2 Dryland Cropland and Pasture

19 Annual Crops & Permanent Crops 6

Crops/Wood mosaic

20 Complex Cultivation Patterns 6

21
Mixed Agriculture & Natural
Vegetation

6

22 Agro-Forestry Areas 6

23 Broad-Leaved Forest 11 Deciduous Broadleaf Forest

24 Coniferous Forest 14 Evergreen Needleleaf Forest

25 Mixed Forest 15 Mixed Forest

26 Natural Grassland 7 Grassland

27 Moors & Heathland 9
Mix Shrubland/Grassland

28 Sclerophyllous Vegetation 9

29 Transitional Woodland-Shrub 9

30 Beaches, Dunes & Sand Plains 19

31 Bare Rock 19 Barren or Sparsely Vegetated

32 Sparsely Vegetated Areas 19

33 Burnt Areas 19

34 Glaciers & Perpetual Snow 24 Snow or Ice

35-38 Inland Marshes, Peatbogs, Salines 17 Herbaceous Wetlands

39 Intertidal Flats 17

40-43 Inland Water 16
Water Bodies

44 Sea & Ocean 16

b. ungrib.exe: Extracts meteorological fields from the Global Forecasting System (GFS) data.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 44 of 49

c. For the definition of the initial and lateral boundary conditions, the 00 UTC forecasts of the
NCEP/GFS [22] analysis and three-hour forecasts are used. Their spatial resolution is
0.25°x0.25° (latitude - longitude) and are operationally available from NCEP
[ftp://ftpprd.ncep.noaa.gov]. Additionally, high resolution data, which are operationally
available from NCEP [ftp://ftpprd.ncep.noaa.gov] with spatial resolution of 1/12°x1/12°
(about 0.083°x0.083°), are used to determine surface sea temperatures.

d. metgrid.exe: Includes the horizontal interpolation of gridded meteorological data from the
GFS of a half a degree resolution in the simulation domain [23].

2. The model forecasting: The meteorological data are then vertically interpolated to the defined
WRF’s levels (with real.exe).

The model is integrated forward in time to produce with an hourly step weather forecast (with
wrf.exe). AGROAPPS operates the numerical weather prediction model WRF version 4.1.3 inside a
docker container, producing high-resolution hourly forecasts for the next 8 and 3.5 days, providing
atmospheric fields according to the meteorological data requirements.

The WRF numerical weather prediction model provides a multitude of configurations of physical
processes occurring in the atmosphere and on the surface of the earth in terms of solar radiation,
cloud microphysics, convective cloud development, planetary boundary layer, surface layer, and
soil thermodynamics and hydrology.

To represent cloud microphysics, the model uses Thomson et al. (2008) [24] microphysics scheme
which supports 5 different types of hydrometeors and is ideal for high resolution simulations, while
in terms of the cumulus convection scheme, the model uses the KF-CuP [25] which is active only in
the external integration domain. In the nested domains, no cumulus convection parameterization
scheme is used because the spatial resolution of the grid allows the small-scale turbulence to be
directly resolved from the microphysical scheme.

To configure the radiation for both long and short-wave radiation components, the model uses the
RRTMG [26] scheme, with a 10 minute run time and the slope_rad option enabled allowing the
radiation scheme to be taken into account various calculations of topography and slopes of the soil.

The planetary boundary layer is configured by the Yonsei University [27] physical parameterization
scheme with the topographic correction options for surface winds and vertical mixing due to heat
loss and radiation enabled. The revised Monin-Obukov MM5 [28] scheme is used for the
parameterization of the atmospheric boundary layer, while the NOAH-MP [29] scheme is used for
the parameterization of the hydrological and thermodynamic soil processes.

Finally, to calculate a multitude of diagnostic variables such as the diameter of hailstones, the
existence and velocity of a tornado, etc., the AFWA diagnostic tool suite is used.

3. The post-processing part of the modelling system: The output forecasted meteorological fields
include two-meter temperature, relative humidity, wind speed and precipitation among the more
than 100 fields available from the model. The raw output of the weather forecast model is in
Network Common Data Form (netCDF) format. The raw data from the WRF model are post-
processed with the Unified Post Processor (UPP) version 4.1 inside a docker container (with
unipost.exe), in order to produce de-staggered grids and diagnostic variables. UPP performs the
following 2-steps process for the prognostic data:

a. Generate GRIB format files per forecast time for each model grid, where the primary
results are first converted from Arakawa staggered C-grid to a de-staggered A-grid, and
then inserted into a regular grid with constant step per geographic width and length
(regular latitude-longitude grid). Normal grids are sub-regions of the four model integration
domains and have a spatial resolution of 18km x 18km, 6km x 6km and 2km x 2km for the
external domain and the nested ones, respectively.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 45 of 49

b. Calculation of diagnostic atmospheric fields which are inserted along with the atmospheric
prognostic fields in GRIB files. The operationally generated atmospheric are the following:

i. Air Temperature at 2m Height

ii. Relative Humidity at 2m Height

iii. Wind Speed and Direction at 10m Height

iv. Total Precipitation and Precipitation Rate

v. Reference Evapotranspiration

vi. Precipitation Types: Hail, Graupel, Ice Pellets and Snow

vii. Snow Height, density, and cover

viii. Solar Radiation

3.5.3 Metrics in idle condition

The status of the testbed in an “awaiting for workload” condition is reported in the following image:

Figure 26 – Resources utilization by Pilot #14

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 46 of 49

.

Figure 27 – Pilot #14 nodes list.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 47 of 49

4 Conclusions
One of the key aspects that emerges from the previous pages is how the task T6.5 is extremely focused on
enabling the Pilots to move to the “INFINITECH way” software development methodology, exploiting a
dedicated infrastructure represented by the NOVA testbed.

During this second iteration, the most important cloud-native INFINITECH artifacts and blueprints have
been produced and consumed to launch and maintain Pilot’s sandboxes on NOVA, and more are up to
come, counting 26 Kubernetes deployment assets and 40+ configuration objects. The Continuous Delivery
pipelines are in place, and they are ready to reference the NOVA infrastructure to proceed with the
automation behind the rolling updates. This is the intermediate stage of the whole task picture, where the
partners and the Pilots have migrated the software successfully, all the benchmarking tools are ready and
all the pre-requirements are in place for the next iteration, in which the main subject will be a full CI/CD
compliance, the analysis of metrics, and the final optimizations.

The documents D6.10, D6.11 and D6.12 are an explicative reference for every professional who wants to
approach to the “INFINITECH way” using an on-premise infrastructure as target environment, as the
content can be considered as a consistent migration guide from a legacy approach to a rapid prototyping
and time saver development process.

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 48 of 49

Appendix A: Literature

[1] «Kubernetes,» [Online]. Available: https://kubernetes.io.
[2] «Packer,» [Online]. Available: https://www.packer.io/.
[3] «Docker,» [Online]. Available: https://www.docker.com.
[4] «RKE,» [Online]. Available: https://rancher.com/products/rke/ .
[5] «CNCF,» [Online]. Available: https://www.cncf.io.
[6] «HELM,» [Online]. Available: https://helm.sh/.
[7] «Nginx,» [Online]. Available: https://nginx.org/.
[8] «Prometheus,» [Online]. Available: https://prometheus.io/.
[9] «Grafana,» [Online]. Available: https://grafana.com/.
[10] Rancher, «Rancher Metrics,» [Online]. Available:

https://rancher.com/docs/rancher/v2.x/en/monitoring-alerting/v2.0.x-v2.4.x/cluster-
monitoring/cluster-metrics/.

[11] https://www.fiware.org/developers/smart-data-models/
[12] https://fiware-orion.readthedocs.io/en/master/
[13] https://fiware.github.io/specifications/ngsiv2/stable/
[14] https://quantumleap.readthedocs.io/en/latest/
[15] https://app.swaggerhub.com/apis/smartsdk/ngsi-tsdb/0.1
[16] https://konghq.com/kong/
[17] https://sumo.dlr.de/docs/index.html
[18] https://opendata.aemet.es/
[19] Links, Skip. "High-Resolution Land Use and Land Cover Mapping".
[20] https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
[21] https://soilgrids.org/#!/?layer=TAXNWRB_250m&vector=1
[22] https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-

gfs
[23] NCEP. (2015). NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. Research

Data Archive at the National Center for Atmospheric Research, Computational and
Information Systems Laboratory. . U.S.: Weather Service/NOAA/U.S.

[24] Thompson, Gregory, et al. "Explicit forecasts of winter precipitation using an improved bulk
microphysics scheme. Part II: Implementation of a new snow parameterization." Monthly
Weather Review 136.12 (2008): 5095-5115.

[25] Berg, Larry K., et al. "Evaluation of a modified scheme for shallow convection:
Implementation of CuP and case studies." Monthly Weather Review 141.1 (2013): 134-147.

[26] Iacono, Michael J., et al. "Radiative forcing by long‐lived greenhouse gases: Calculations
with the AER radiative transfer models." Journal of Geophysical Research:
Atmospheres113.D13 (2008).

[27] Hong, Song-You, Yign Noh, and Jimy Dudhia. "A new vertical diffusion package with an
explicit treatment of entrainment processes." Monthly weather review 134.9 (2006): 2318-
2341.

https://kubernetes.io
https://www.packer.io/
https://www.docker.com
https://www.cncf.io
https://helm.sh/
https://nginx.org/
https://prometheus.io/
https://grafana.com/
https://rancher.com/docs/rancher/v2.x/en/monitoring-alerting/v2.0.x-v2.4.x/cluster-monitoring/cluster-metrics/
https://rancher.com/docs/rancher/v2.x/en/monitoring-alerting/v2.0.x-v2.4.x/cluster-monitoring/cluster-metrics/
https://opendata.aemet.es/
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
https://soilgrids.org/
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs

D6.11 – Sandboxes for FinTech/InsuranceTech Innovators - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 49 of 49

[28] Jiménez, Pedro A., et al. "A revised scheme for the WRF surface layer formulation." Monthly
Weather Review 140.3 (2012): 898-918.

[29] Niu, Guo‐Yue, et al. "The community Noah land surface model with multiparameterization
options (Noah‐MP): 1. Model description and evaluation with local scale measurements."
Journal of Geophysical Research: Atmospheres 116.D12 (2011).

[30] https://rancher.com/docs/rancher/v2.5/en/installation/requirements/#hardware-requirements

	1Introduction
	1.1Objective of the Deliverable
	1.2Insights from other Tasks and Deliverables
	1.3Structure

	2INFINITECH System Design for shared testbed
	2.1General system design of the shared testbed
	2.2Testbed monitoring tools
	2.3Testbed metrics collection

	3Sandboxes for FinTech and InsuranceTech innovators
	3.1Pilot#2 – Real-time risk assessment in Investment
	3.1.1NOVA sandbox description
	3.1.2 Second-stage components deployment on NOVA
	3.1.3 Metrics in idle condition

	3.2Pilot#11 – Personalized insurance products based o
	3.2.1NOVA sandbox description
	3.2.2 Second-stage components deployment on NOVA
	3.2.3 Metrics in idle condition

	3.3Pilot#12 – Real World Data for Novel Health-Insura
	3.3.1NOVA sandbox description
	3.3.2 Second stage components deployment on NOVA
	3.3.3 Metrics in idle condition

	3.4Pilot #13 – Alternative/automated insurance risk s
	3.4.1 NOVA sandbox description
	3.4.2 Second-stage components deployment on NOVA
	3.4.3 Metrics in idle condition

	3.5Pilot#14 – Big Data and IoT for the Agricultural I
	3.5.1 NOVA sandbox description
	3.5.2 Second-stage components deployment on NOVA
	3.5.3 Metrics in idle condition

	4Conclusions

