
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D6.12 – Sandboxes for FinTech and

InsuranceTech Innovators - III

Revision Number 3.0

Task Reference T6.5

Lead Beneficiary ENG

Responsible Domenico Messina - Susanna Bonura

Partners Participating partners in Task according to DOA

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2022-06-30

Delivered Date 2022-07-11

Internal Reviewers NOVA, CCA

Quality Assurance INNOV

Acceptance Coordinator Accepted

EC Project Officer Beatrice Plazzotta

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no 856632

Ref. Ares(2022)5050004 - 11/07/2022

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 36

Contributing Partners
Partner Acronym Role1 Author(s)2

ENG Lead Beneficiary Domenico Messina – Susanna Bonura

HPE Contributor

NOVA Contributor

JRC Contributor

ATOS Contributor

WEA Contributor

AGRO Contributor

GFT Contributor

UBI Contributor

LXS Contributor

CTAG Contributor

CPH Contributor

DYN Contributor

FTS Contributor

GEN Contributor

PRIVE Contributor

RB Contributor

UNP Contributor

UPRC Contributor

INNOV Contributor

NOVA, CCA Internal reviewers

INNOV Quality Assurance

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 36

Revision History
Version Date Partner(s) Description

0.1 2022-05-05 ENG and contrib.

partners

ToC Version

0.2 2022-05-20 AGRO Contribution merged

0.3 2022-05-27 INNOV Contribution merged

0.4 2022-05-31 ATOS, UBI Contribution merged

0.5 2022-06-10 WEA, LXS Contribution merged

0.6 2022-06-16 CTAG Contribution merged

1.0 2022-06-27 ENG First Version ready for Internal Peer Review

1.1 2022-06-30 NOVA, CCA, INNOV Version after Internal Peer Review and QA

2.0 2022-07-05 HPE, GFT Overall review

3.0 2022-07-11 ENG Version for Submission

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 36

Executive Summary
D6.12 - Sandboxes for FinTech and InsuranceTech innovators III, is the third and last report of its series,
concluding the walk-through for the process of tailoring sandboxes using a dedicated infrastructure.

It addresses the subject of the environment observability, which is one of the main objectives of the latter
part of the activities within task T6.5. Observability is one of the key aspects for keeping distributed systems
healthy and guaranteeing the availability of the services that run within our environment, in the specific case
of sandboxes hosted in the NOVE infrastructure. It allows users to deduct performance characteristics from
the internal components that belong to the system, detect bottlenecks, issues, and take mitigation and fix
actions fast. From the report, several aspects related to the software runtime environment can be analyzed,
as well as some anomalies in the processes that support the software development. For example, if a specific
build step takes too long to complete, it could be a symptom of bad practice or an issue in the CI/CD
automation. The study aimed to detect possible bottlenecks, overcommitted nodes within the cluster used
by the pilots, and resources under pressure; this will represent the starting point for mitigating the issue and
solving the problem that may occur more than once across all the sandboxes if, the same critical conditions
will show up during the environment lifetime.

The data collected, relating to this aspect, reveal that pilot and tech proxies have been able to run their
software without inconveniences or restrictions imposed by the system, which is yet another demonstration
of the possibility to tailor dedicated INFINITECH Sandboxes in an on-premise environment, such as Nova’s
testbed, without any hassle. INFINITECH’s NOVA testbed runs a constellation of software providing an
observable environment for microservice-based and cloud-native architecture, adopting cloud computing
best practices and appropriate runtime isolation mechanisms, making it a good reference example for easily
reproducing such a complex system on other infrastructures so that they can be ready to be used, in line with
the INFINITECH reference architecture and compliant with the “INFINITECH way” principles.

Data have been collected from the sandboxes running in the NOVA testbed and are accessible from the URL
https://rancher.vps.uninova.pt/g/clusters . The administrative account has the privileges needed to explore
each pilot sandbox under the technical perspective, managing resources and runtime environments, and for
what is required regarding the CI/CD stack, timelines and trends, as can be explored in detail from:
https://jenkins.infinitech-h2020.eu.

https://rancher.vps.uninova.pt/g/clusters
https://jenkins.infinitech-h2020.eu/

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 36

1 Table of Contents

2 Introduction .. 10

2.1 Objective of the Deliverable .. 10

2.2 Insights from other Tasks and Deliverables .. 10

2.3 Structure .. 11

3 INFINITECH in-cluster sandbox analytics .. 12

3.1 Pilot#2 Real-time risk assessment in Investment Banking: scraping metrics 14

3.1.1 Cluster topology .. 14

3.1.2 Active Kubernetes objects ... 15

3.1.3 Statistics and resource consumption... 15

3.1.4 CI/CD timeline and trends ... 16

3.2 Pilot#11 - Personalized insurance products based on IoT connected vehicles: scraping metrics 17

3.2.1 Cluster topology .. 17

3.2.2 Active Kubernetes objects ... 18

3.2.3 Statistics and resource consumption... 19

3.2.4 CI/CD timeline and trends ... 20

3.3 Pilot#12 - Real World Data for Novel Health-Insurance products: scraping metrics 20

3.3.1 Cluster topology .. 20

3.3.2 Active Kubernetes objects ... 21

3.3.3 Statistics and resource consumption... 21

3.3.4 CI/CD timeline and trends ... 23

3.4 Pilot#13 - Alternative/automated insurance risk selection - product recommendation for SME: scraping
metrics .. 23

3.4.1 Cluster topology .. 23

3.4.2 Active Kubernetes objects ... 24

3.4.3 Statistics and resource consumption... 24

3.4.4 CI/CD timeline and trends ... 25

3.5 Pilot#14 - Big Data and IoT for the Agricultural Insurance Industry: scraping metrics 26

3.5.1 Cluster topology .. 26

3.5.2 Active Kubernetes objects ... 26

3.5.3 Statistics and resource consumption... 27

3.5.4 CI/CD timeline and trends ... 28

3.6 Blockchain sandbox: scraping metrics ... 28

3.6.1 Cluster topology .. 28

3.6.2 Active Kubernetes objects ... 29

3.6.3 Statistics and resource consumption... 30

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 36

3.6.4 CI/CD timeline and trends ... 31

4 Optimizations and environment improvements .. 33

4.1.1 Technology architecture ... 33

4.1.2 Service distribution and configuration... 34

4.2 Logging... 34

4.2.1 Service overview.. 34

4.2.2 Technology architecture ... 34

4.2.3 Service distribution and configuration... 35

5 Conclusions ... 36

List of Figures
Figure 1 - INFINITECH Work Breakdown Structure .. 10
Figure 2 - Rancher’s landing dashboard ... 12
Figure 3 - Rancher’s cluster metrics dashboard... 12
Figure 4 - Rancher’s Kubernetes dashboard ... 13
Figure 5 - Jenkins’ stage view ... 13
Figure 6 - Pilot#2 average cluster resource consumption overview.. 14
Figure 7 - Pilot#2 Kubernetes objects overview .. 15
Figure 8 - Pilot#2 Pod cpu request/limit .. 15
Figure 9 - Pilot#2 Pod memory request/limit.. 16
Figure 10 - Pilot#2 disk I/O trend .. 16
Figure 11 - Pilot#2 network I/O trend.. 16
Figure 12 - Pilot#2 average CI/CD stage times .. 17
Figure 13 - Pilot#11 average cluster resource consumption overview .. 18
Figure 14 - Pilot#11 Kubernetes objects overview ... 19
Figure 15 - Pilot#11 Pod cpu request/limit ... 19
Figure 16 - Pilot#11 Pod memory request/limit .. 20
Figure 17 - Pilot#12 average cluster resource consumption overview .. 21
Figure 18 - Pilot#12 Kubernetes objects overview ... 21
Figure 19 - Pilot#12 Pod cpu request/limit ... 22
Figure 20 - Pilot#12 Pod memory request/limit .. 22
Figure 21 - Pilot#12 average CI/CD stage times... 23
Figure 22 - Pilot#13 average cluster resource consumption overview .. 24
Figure 23 - Pilot#13 Kubernetes objects overview ... 24
Figure 24 - Pilot#13 Pod cpu request/limit ... 25
Figure 25 - Pilot#13 Pod memory request/limit .. 25
Figure 26 - Pilot#14 average cluster resource consumption overview .. 26
Figure 27 - Pilot#14 Kubernetes objects overview ... 27
Figure 28 - Pilot#14 Pod cpu request/limit ... 27
Figure 29 - Pilot#14 Pod memory request/limit .. 28
Figure 30 - Blockchain average cluster resource consumption overview ... 29
Figure 31 - Blockchain sandbox Kubernetes objects overview ... 29
Figure 32 - Blockchain sandbox Pod cpu request/limit ... 30

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 36

Figure 33 - Blockchain sandbox Pod memory request/limit .. 31
Figure 34 - Blockchain chaincode updates ... 32
Figure 35 - Istio Architecture ... 33
Figure 36 - EFK Stack .. 35

List of Tables
Table 1 - Pilot#2 cluster nodes ... 14
Table 2 - Pilot#11 cluster nodes ... 18
Table 3 - Pilot#12 cluster nodes ... 20
Table 4 - Pilot#13 cluster nodes ... 23
Table 5 - Pilot#14 cluster nodes ... 26
Table 6 - Blockchain cluster nodes .. 28

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 36

Abbreviations/Acronyms
Abbreviation Definition

AgI Agricultural Insurance

AMI Amazon Machine Image

API Application Programming Interface

AWS Amazon Web Services

AWS EBS Amazon Web Services Elastic Block Store

AWS EKS Amazon Web Services Elastic Kubernetes Service

AWS ELB Amazon Web Services Elastic Load Balancer

AWS KMS Key Management Service

BP Blueprint

CICD Continuous Integration Continuous Development

CLI Command Line Interface

CNCF Cloud Native Computing Foundation

CNI Container Network Interface

DNS Dynamic Name Resolution

ENI Elastic Network Interfaces

EKS Elastic Kubernetes Service

EO Earth Observation

GKS Google Kubernetes Engine

HA High Availability

HCL Hashi Corp Configuration Language

HTAP Hybrid Transactional and Analytical Processing

IAM Identity and Access Management

IP Internet Protocol

K3S Lightweight Kubernetes

K8S Kubernetes

ML/DL Machine Learning Deep Learning

PoC Proof of Concept

PV Persistent Volume

PVC Persistent Volume Claim

RBAC Role-Based Access Control

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 36

RKE Rancher Kubernetes Engine

SHARP Smart, Holistic, AutonomOUS, Regulatory-compliant, Personalized

SSH Secure Socket Shell

YAML YAML Ain’t Markup Language

VaR Value-at-Risk

VM Virtual Machine

VPC Virtual Private Cloud

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 36

2 Introduction
D6.12 Sandboxes for FinTech and InsuranceTech innovators III, is the third and last report of its series,
concluding the walk-through for the process of tailoring sandboxes to a dedicated infrastructure. In the
previous two document releases, a description of the testbed bootstrap, and the sandbox build planning,
mapping, and implementation was presented. The only missing phase, to conclude the whole process, is
about the environment observability, which is one of the main objectives of the latter part of the activities
within task T6.5 as well as one of the subjects exposed in the next few pages. The supporting software
adopted for this purpose can be reached via the websites https://rancher.vps.uninova.pt/g/clusters and
https://jenkins.infinitech-h2020.eu .

2.1 Objective of the Deliverable
This deliverable is a report that digs into sandbox analytics and answers questions like “how are sandboxes
running?”, “Are they performing well?”, “could they be improved?” and “are they supporting our developers
in the right way?”. Observability, detectability, monitoring, and analysis are fundamental tasks to keep a
distributed system alive and, most importantly, healthy and available. Sandbox tailoring adopts these
principles, therefore a series of analytics will be executed using some specific tools that have been installed
into the testbed and that will be exploited to gather and study all the pieces of information to keep constant
track of all the live workload objects that are running within the sandbox. The study aims to detect possible
bottlenecks, overcommitted nodes within the cluster used by the pilots, and resources under pressure; this
will represent the starting point for mitigating the issue and solving any problem that may occur more than
once across all the sandboxes if, the same critical conditions will show up during the environment lifetime.
Once again, all the NOVA sandboxes will be taken into consideration in order to see if there are specific
emerging needs which, in case, will be exposed in the sandbox-dedicated section.

2.2 Insights from other Tasks and Deliverables
WP6 has been contributing to different WPs and deliverables and in turn relies on inputs coming from other

WPs, as shown in the following figure.

Figure 1 - INFINITECH Work Breakdown Structure

https://rancher.vps.uninova.pt/g/clusters
https://jenkins.infinitech-h2020.eu/

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 36

Within T6.5, the deliverables submitted until now from WPs 3-4-5 have been taken into account.

In addition, the following deliverables within the WP6 are key inputs to this document:

• D6.2 - Testbeds Status and Upgrades - II

• D6.5 - Tools and Techniques for Tailored Sandboxes and Management of Datasets - II.

It is worth noticing that there is a relation between this deliverable and the deliverable on the Sandboxes in

Incumbent Testbeds (D6. 7-8-9), since they share the same goals but from different perspectives.

Finally, the progress of task T6.5 (together with the other tasks in WP6) is a key driver of the INFINITECH
WP7, which is focused on the Large Pilots Operations and Stakeholders Evaluation of the proposed Financial
and Insurance Services.

2.3 Structure
Besides the introductory chapter that provides the overview and the objectives of this report, the deliverable
is articulated into two other chapters: “INFINITECH in-cluster sandbox analytics” and “Optimizations and
environment improvements”. The first of the two chapters is a per-sandbox analysis that starts with the
cluster topology overview so that the reader can have it always in sight, it introduces a list and a description
of the active Kubernetes workload objects coming with Kubernetes-related metrics, it exposes statistics and
resource consumption trends and finally, it proposes the analysis of the CI/CD related context with timeline
and trends inspection.

The “Optimizations and environment improvements” chapter is about overcoming possible issues detected
and possible known issues that may occur within INFINITECH sandboxes during their lifetime

Last but not least, the concluding chapter will be a recap of the overall work behind the observability,
detectability, and analysis tasks to draw the necessary remarks.

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 36

3 INFINITECH in-cluster sandbox analytics
All the tools used for scraping metrics from the sandbox have already been presented in chapter 2 of the
deliverable D6.11 – Sandboxes for FinTech and InsuranceTech Innovators III . For the sake of a quick recap,
the Rancher dashboard and the Jenkins dashboard are used for compiling such a report. Rancher dashboard
works off the shelf with the Prometheus metrics system and the Grafana monitoring UI which are running in
the testbed. Both the dashboards provide an overview first and all the required details on demand if the
users want to go deeper in the exploration of the analytics. For example on the rancher dashboard, once one
of the clusters is selected, the system provides the overview:

Figure 2 - Rancher’s landing dashboard

Then, the user can explore in-depth the specific aspects she wants to investigate, such as the node load
average over time:

Figure 3 - Rancher’s cluster metrics dashboard

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 36

The user can go further to inspect the Kubernetes objects (such as the running pods) using the cluster
explorer.

Figure 4 - Rancher’s Kubernetes dashboard

Moving on to the Jenkins dashboard, to get access to pipelines’ statistics, users can click on a specific pipeline
to get access to the execution history in the stage view.

Figure 5 - Jenkins’ stage view

The stage view shows a table with time-related details of the stage execution. The table is composed of
trigger events in the row entries. For each entry, the duration of the steps is reported and the average stage
time is highlighted right below the header of the table.

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 36

3.1 Pilot#2 Real-time risk assessment in Investment Banking:
scraping metrics

3.1.1 Cluster topology

Pilot#2 uses a Kubernetes v1.20.6 cluster made of one control plane node and 3 worker nodes
interconnected. They have the following characteristics:

Table 1 - Pilot#2 cluster nodes

Name Role CPU (vCPU) Ram (GiB)

pilot2-master1 Control Plane 4 3.7

pilot2-worker1 Worker 4 3.7

pilot2-worker2 Worker 4 3.7

pilot2-worker3 Worker 6 7.6

In terms of overall average workload running in the cluster as a whole, considering also the resource
consumed by the support software necessary to get the Kubernetes environment running properly, plus the
container for all the pluggable capabilities, such as metrics servers, network sidecar containers etc. the
situational picture is the following:

Figure 6 - Pilot#2 average cluster resource consumption overview

During heavy workload times, core consumption spans between 50% and 70%, with memory utilisation
exceeding 80%. However, the Infinitech Way DevOps enables timely resource allocations among the
deployed sandboxes according to their needs.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cores reserved

Cores used

Memory reserved

Memory used

Pilot#2 Average Cluster Resource Consumption
Overview

Resource Used Resource Available

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 36

3.1.2 Active Kubernetes objects

The status of the Kubernetes objects declared and applied for pilot#2 is recapped in the chart below:

Figure 7 - Pilot#2 Kubernetes objects overview

3.1.3 Statistics and resource consumption

To have a look in detail into the running deployment unit, the pods, here is a comparison of the CPU request
and CPU cap for the pilot-specific running pods in the cluster:

Figure 8 - Pilot#2 Pod cpu request/limit

The same comparison can be checked regarding the memory requests and limits:

0

5

10

15

20

25

30

35

40

Pods Deployments Statefulsets Daemonsets Jobs Services

Pilot#2 Kubernetes Objects Overview

System-specific Pilot-specific

000 001 001 002 002 003 003 004 004 005

infinistore-0

lx-kafka-0

ui-risk-assessment

ai-model-for-var-prediction

Pilot#2 Pod cpu Request/Limit (vCPU)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 36

Figure 9 - Pilot#2 Pod memory request/limit

Here is the disk and network I/O summary in a 30-days time window:

Figure 10 - Pilot#2 disk I/O trend

Figure 11 - Pilot#2 network I/O trend

3.1.4 CI/CD timeline and trends

Pilot#2 has 2 active complete pipelines in the INFINITECH’s Jenkins instance split into three steps: clone
repository, build docker, push docker image, and deploy at NOVA infrastructure. Jenkins reports the following
average stage runtimes for each pipeline:

1) Deploy-ai-model-for-var-prediction has a stage of roughly 7 minutes.

000 001 002 003 004 005 006 007 008 009

infinistore-0

lx-kafka-0

ui-risk-assessment

ai-model-for-var-prediction

Pilot#2 Pod memory Request/Limit (GiB)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 36

2) Deploy-ui-risk-assessment-based-on-var has a stage of 9min and 20s.

In addition, there are 2 more pipelines only for deploying Infinistore and Kafka instances in Pilot#2 cluster.
At the same time, the Data Management layer of Infinitech manages the respective pipelines for building
these services. Since the artifacts of Infinistore and Kafka are already built, their deployment typically
requires less than 2 seconds.

Figure 12 - Pilot#2 average CI/CD stage times

3.2 Pilot#11 - Personalized insurance products based on IoT
connected vehicles: scraping metrics

3.2.1 Cluster topology

Pilot#11 relies on an internally managed infrastructure to run and achieve the pilot’s targets. This isolated
instance is due to the characteristics of some of the datasets managed to build the AI -powered driving
profiling tool. Specifically, the data from real drivers used to train the models are considered sensitive
information, and it is preferred to be kept within the strict control of the pilots’ partners. In ay case, this
internal deployment, described in detail in D6.11, follows strictly the INFINTECH guidelines, based on:

· Kubernetes V1.18.15 cluster, with 5 nodes, 24 cores, 44 GB of RAM, and 4TB of storage capabilities.

· Docker images, distributed through an open repository, to manage the services and updates of the Smart
Fleet components.

· Internal GitLab (managed by ATOS) to collaborate in the code development of each of the services
composing the Pilot#11 plus supporting the CI/CD pipelines.

In parallel to its internal framework, Pilot#11 supports a clone of the Smart Fleet framework and the AI
Driving Profiling model deployed in the INFINITECH (NOVA) premises, including the same set of services and
components (same versions and same docker images) running on the main instance, but without the datasets
coming from the real drivers. This testbed instance is used internally by Pilot#11 partners to simulate big
traffic datasets (using the SUMO instance and the NGSI adaptors) and for external INFINITECH partners to
access potential useful datasets and to explore the capabilities of the Pilot#11 framework. The data shown
in this section refers to this testbed infrastructure.

Pilot#11 Testbed uses a Kubernetes v1.20.8 cluster made of one control plane node plus 5 worker nodes
interconnected, with the following schema:

00:00:00 00:01:26 00:02:53 00:04:19 00:05:46 00:07:12 00:08:38 00:10:05

ui-risk-assessment-based-build

ai-model-for-var-prediction-build

Pilot#2 average CI/CD stage times

Clone Build docker Push Deploy

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 36

Table 2 - Pilot#11 cluster nodes

Name Role CPU (vCPU) Ram (GiB)

pilot11-master1 Control Plane 6 7.6

pilot11-worker1 Worker 6 17

pilot11-worker2 Worker 6 17

pilot11-worker3 Worker 6 17

pilot11-worker4 Worker 6 17

pilot11-worker5 Worker 6 17

On its basic load, this testbed runs the service that captures periodically (every thirty minutes) and stores
internally the weather information reported by the weather stations involved in the pilot. Additionally, it also
replicates, from the main instance, the information from traffic alerts. These basic (and permanent) workload
is shown in the figure below.

Figure 13 - Pilot#11 average cluster resource consumption overview

Additionally, the testbed supports occasionally some traffic simulations from its SUMO (Urban Mobility
Simulator customized version) that increase substantially the overall workload, stressing the context broker
and the database storage by generating 2k new registries per second. This pushes the overall memory used
to 60-70% and the used cores to 50%.

3.2.2 Active Kubernetes objects

The figure below summarises the set of Kubernetes objects declared and applied for pilot#11, which
represents the components shown in D6.11 for the Smart Fleet framework.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cores reserved

Cores used

Memory reserved

Memory used

Pilot#11 Average Cluster Resource Consumption Overview

Resource Used Resource Available

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 36

Figure 14 - Pilot#11 Kubernetes objects overview

3.2.3 Statistics and resource consumption

The following figures represent the main components of the Smart Fleet running on the Pilot#11 NOVA
tested. In terms of cores required, the “sumoserver” component that represents the Urban Mobility
Simulator (SUMO) is the most consuming one, as it requires extra processing power to perform simulations.
The rest of the components represents a low but constant workload, but, in the case of the CrateDB service,
require extra RAM memory to ensure the proper process of the data queues to store all historical data.

Figure 15 - Pilot#11 Pod cpu request/limit

0

5

10

15

20

25

30

35

40

45

50

Pods Deployments Statefulsets Daemonsets Jobs Services

Pilot#11 Kubernetes Objects Overview

System-specific Pilot-specific

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50

aemetwobs

crate-db

mongo-db-cb

orion-cb

quantumleap

sumoserver

gradiant-anonymization-tool

Pilot#11 Pod cpu Request/Limit (vCPU)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 36

Figure 16 - Pilot#11 Pod memory request/limit

3.2.4 CI/CD timeline and trends

In the case of Pilot#11, as mentioned in the section 3.2.1, the main environment is running in a private
premise, alongside a private GitLab instance for hosting the code. The cloned environment in NOVA,
which is available to run simulations, replicates the weather and the alerting system and it gets updated
modifying the YAML kubernetes specification files created in the sandbox.

3.3 Pilot#12 - Real World Data for Novel Health-Insurance
products: scraping metrics

3.3.1 Cluster topology

Pilot#12 uses a Kubernetes v1.20.6 cluster made of one control plane node and 5 worker nodes
interconnected. They have the following characteristics:

Table 3 - Pilot#12 cluster nodes

Name Role CPU (vCPU) Ram (GiB)

pilot12-master1 Control Plane 6 7.6

pilot12-worker1 Worker 4 16

pilot12-worker2 Worker 4 16

pilot12-worker3 Worker 4 16

pilot12-worker4 Worker 4 16

pilot12-worker5 Worker 4 3.7

0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00 18,00

aemetwobs

crate-db

mongo-db-cb

orion-cb

quantumleap

sumoserver

gradiant-anonymization-tool

Pilot#11 Pod memory Request/Limit (GiB)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 36

Figure 17 - Pilot#12 average cluster resource consumption overview

3.3.2 Active Kubernetes objects

The status of the Kubernetes objects declared and applied for pilot#12 is presented in the chart below:

Figure 18 - Pilot#12 Kubernetes objects overview

3.3.3 Statistics and resource consumption

Having a look at the running pods for pilot#12, here is a comparison of the CPU requests and CPU limits:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cores reserved

Cores used

Memory reserved

Memory used

Pilot#12 Average Cluster Resource Consumption Overview

Resource Used Resource Available

0

10

20

30

40

50

60

70

Pods Deployments Statefulsets Daemonsets Jobs Services

Pilot#12 Kubernetes Objects Overview

System-specific Pilot-specific

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 36

Figure 19 - Pilot#12 Pod cpu request/limit

The same comparison can be performed regarding the memory requests and limits:

Figure 20 - Pilot#12 Pod memory request/limit

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50

consul

data-handler-0

data-parser

data-workflow-orchestrator

infinistore-0

minio-1

mongo-express

mongodb-0

my-shell

data-protection-orchestrator

grad-anonymization-frontend

minio-0

rabbitmq-0

redis

worker

Pilot#12 Pod cpu Request/Limit (vCPU)

Limit Request

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00

consul

data-handler-0

data-parser

data-workflow-orchestrator

infinistore-0

minio-1

mongo-express

mongodb-0

my-shell

data-protection-orchestrator

grad-anonymization-frontend

minio-0

rabbitmq-0

redis

worker

Pilot#12 Pod memory Request/Limit (GiB)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 36

3.3.4 CI/CD timeline and trends

Pilot#12 has 3 active pipelines in INFINITECH’s Jenkins instance:

Figure 21 - Pilot#12 average CI/CD stage times

3.4 Pilot#13 - Alternative/automated insurance risk selection -
product recommendation for SME: scraping metrics

3.4.1 Cluster topology

Pilot#13 uses a Kubernetes v1.20.6 cluster made of one control plane node and 5 worker nodes
interconnected. They have the following characteristics:

Table 4 - Pilot#13 cluster nodes

Name Role CPU (vCPU) Ram (GiB)

pilot13-master1 Control Plane 6 7.6

pilot13-worker1 Worker 4 16

pilot13-worker2 Worker 4 16

pilot13-worker3 Worker 4 3.7

pilot13-worker4 Worker 6 7.6

pilot13-worker5 Worker 6 7.6

In terms of overall average workload running in the cluster as a whole, considering also the resource
consumed by the support software necessary to get the Kubernetes environment running properly, plus the
container for all the pluggable capabilities, such as metrics servers, network sidecar containers etc. the
situational picture is the following:

00:00:0000:00:0900:00:1700:00:2600:00:3500:00:4300:00:5200:01:0000:01:09

pilot12- Data-Protection-[..]-server-build

pilot12- Data-Protection-Orchestrator

Pilot#12 average CI/CD stage times

Clone Build docker Push

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 36

Figure 22 - Pilot#13 average cluster resource consumption overview

3.4.2 Active Kubernetes objects

The status of the Kubernetes objects declared and applied for pilot#13 is recapped in the chart below:

Figure 23 - Pilot#13 Kubernetes objects overview

3.4.3 Statistics and resource consumption

To have a look in detail into the running deployment unit, the pods, here is a comparison of the CPU request
and CPU cap for the pods in the cluster:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cores reserved

Cores used

Memory reserved

Memory used

Pilot#13 Average Cluster Resource Consumption Overview

Resource Used Resource Available

0

5

10

15

20

25

30

35

40

45

Pods Deployments Statefulsets Daemonsets Jobs Services

Pilot#13 Kubernetes Objects Overview

System-specific Pilot-specific

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 36

Figure 24 - Pilot#13 Pod cpu request/limit

The same comparison can be checked regarding the memory requests and limits:

Figure 25 - Pilot#13 Pod memory request/limit

3.4.4 CI/CD timeline and trends

Pilot#13 does not use any pilot-specific component deployed into the INFINITECH sandbox. All components
related to its integrated solution are being kept on-premise and only use the INFINISTORE that is deployed
into the provided sandbox. As a result, there is no pilot-specific CI/CD pipeline for Pilot#13. The Data
Management layer of INFINITECH includes the INFINISTORE and manages the respective pipelines for
building the datastore. Since this artifact is already built, its deployment typically requires a couple of seconds.
It is important to highlight that the benchmark artifact that has been shown in the previous figures of this
pilot, is only used internally for benchmarking purposes, but it is not part of the integrated solution.

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50

benchmark

infinistore-0

Pilot#13 Pod cpu Request/Limit (vCPU)

Limit Request

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50 5,00 5,50 6,00 6,50

benchmark

infinistore-0

Pilot#13 Pod memory Request/Limit (GiB)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 36

3.5 Pilot#14 - Big Data and IoT for the Agricultural Insurance
Industry: scraping metrics

3.5.1 Cluster topology

Pilot#14 uses a Kubernetes cluster made of one control plane node and 10 worker nodes interconnected.
They have the following characteristics:

Table 5 - Pilot#14 cluster nodes

Name Role CPU (vCPU) Ram (GiB)

pilot14-master1 Control Plane 24 17

pilot14-worker1 Worker 24 17

pilot14-worker2 Worker 24 17

pilot14-worker3 Worker 24 17

pilot14-worker4 Worker 24 17

pilot14-worker5 Worker 24 17

pilot14-worker6 Worker 24 17

pilot14-worker7 Worker 24 17

pilot14-worker9 Worker 6 17

pilot14-worker10 Worker 6 17

pilot14-worker11 Worker 24 17

Figure 26 - Pilot#14 average cluster resource consumption overview

3.5.2 Active Kubernetes objects

The status of the Kubernetes objects declared and applied for pilot#14 is recapped in the chart below:

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cores reserved

Cores used

Memory reserved

Memory used

Pilot#14 Average Cluster Resource Consumption Overview

Resource Used Resource Available

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 36

Figure 27 - Pilot#14 Kubernetes objects overview

3.5.3 Statistics and resource consumption

A detailed look into the running deployment unit, the pods, is given as a comparison of the CPU request and
CPU cap for the pilot specific running pods in the cluster:

Figure 28 - Pilot#14 Pod cpu request/limit

The same comparison can be checked regarding the memory requests and limits:

0

10

20

30

40

50

60

70

Pods Deployments Statefulsets Daemonsets Jobs Services

Pilot#14 Kubernetes Objects Overview

System-specific Pilot-specific

0,00 5,00 10,00 15,00 20,00 25,00 30,00

wrf-2

Pilot#14 Pod cpu Request/Limit (vCPU)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 36

Figure 29 - Pilot#14 Pod memory request/limit

3.5.4 CI/CD timeline and trends

Pilot#14 has three active pipelines in INFINITECH that are not managed by Jenkins. Pilot14 has an internally
managed stage split in three steps: Pull Image from private docker hub (Pipeline 1), then create volumes in
Kubernetes to hold the data (input and output of the model Pipeline 2) and finally launch the containerized
weather forecasting model (Pipeline 3).

3.6 Blockchain sandbox: scraping metrics

3.6.1 Cluster topology

The blockchain-enabled sandbox is the latest sandbox hosted on Nova, it is implemented with a Kubernetes
cluster v1.20.11 with one control plane node and 3 workers. Their specifications are reported in the table
below:

Table 6 - Blockchain cluster nodes

Name Role CPU (vCPU) Ram (GiB)

blockchain-master1 Control Plane 4 7.64

blockchain-worker1 Worker 8 17

blockchain-worker2 Worker 8 17

blockchain-worker3 Worker 8 17

A snapshot of the cluster context reports this usage:

0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00 18,00 20,00

wrf-2

Pilot#14 Pod memory Request/Limit (GiB)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 36

Figure 30 - Blockchain average cluster resource consumption overview

In this case, we refer to the “idle condition” a condition in which the system is not processing any transactions
on the blockchain and the dApps are not receiving any requests. As it is possible to deduce from the
Blockchain Average Cluster Resource Consumption Overview chart, the idle conditions are very lightweight
and the CPU and memory load is mostly influenced by the blockchain core components (orderers, peers,
CAs), that push the resource requests up to 40% - 60% of the capability.

3.6.2 Active Kubernetes objects

The blockchain-dedicated cluster has the following object distribution:

Figure 31 - Blockchain sandbox Kubernetes objects overview

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cores reserved

Cores used

Memory reserved

Memory used

Blockchain Average Cluster Resource Consumption Overview

Resource Used Resource Available

0

10

20

30

40

50

60

70

Pods Deployments Statefulsets Daemonsets Jobs Services

Blockchain Sandbox Kubernetes Objects Overview

System-specific Sandbox-specific Sandbox-specific completed

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 36

3.6.3 Statistics and resource consumption

It is time to dive into the sandbox-specific pods running in the cluster with a request/limit comparison. There
are 13 elements to present. Among these elements, there’s the hyperledger fabric distribution that brings
into the system two peers representing two different organizations, one orderer and a certification authority
module for each organization.

Figure 32 - Blockchain sandbox Pod cpu request/limit

It is a distribution of the resources uniform enough, also considering that many of the components
(Hyperledger Fabric ones) are handled via the same helm release. Memory has the following allocation:

0,00 0,50 1,00 1,50 2,00 2,50

cms-backend

cms-frontend

infinitech-database-0

keycloak-0

argo-server

blockchain-api

hlf-ca-org1

hlf-ca-org2

hlf-orderer

hlf-peer-org1

hlf-peer-org2

minio

Blockchain Sandbox Pod cpu Request/Limit (vCPU)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 36

Figure 33 - Blockchain sandbox Pod memory request/limit

3.6.4 CI/CD timeline and trends

Unlike the other sandboxes which are supported by CI/CD pipelines defined in Jenkins, the blockchain
sandbox makes use of Argo Workflows, a tool that comes from the Argo project suite
(https://argoproj.github.io). In a few words, Argo Workflows is a workflow engine for Kubernetes clusters
that comes with a set of custom resource definitions that allows defining workflows natively using DAGs.

In this specific case, Argo Workflows is used to perform maintenance operations in the Hyperledger Fabric
installation running in the Blockchain Sandbox hosted by NOVA. Operations such as blockchain channel
topology updates, updates and creation of the chaincode, injection of the cryptomaterial, are easily triggered
using the helm upgrade and argo submit commands.

In the lifetime of the sandbox, until the creation of this report, 21 chaincode updates have been triggered (it
is possible to check the statistics using the argo list command):

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50

cms-backend

cms-frontend

infinitech-database-0

keycloak-0

argo-server

blockchain-api

hlf-ca-org1

hlf-ca-org2

hlf-orderer

hlf-peer-org1

hlf-peer-org2

minio

Blockchain Sandbox Pod memory Request/Limit (GiB)

Limit Request

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 36

Figure 34 - Blockchain chaincode updates

Chaincode Updates

Succeeded Failed

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 36

4 Optimizations and environment improvements
The subdivision of a monolithic application into several microservices, on the one hand, facilitates their
development and deployment, on the other hand, makes their management extremely complex due to a
large number of microservices themselves.

This complexity makes the correct management of communication, load balancing, tracing and faults
challenging, and often a simple Load Balancer service is not enough to manage this scenario. In order to
overcome these challenges, it could be useful to use a Service Mesh.

Service Mesh is designed to meet the need to manage these complex environments based on microservices
with high volumes of traffic. Some of the features it provides to facilitate the management of these
environments are:

• Load balancing: It allows to have a load balancing based on Layer 7 instead of only classic Layer 4;
• Encryption: It allows to encrypt all the requests and responses both towards services and among

services, the most used technology is mTLS (mutual TLS);

• Circuit breaker pattern: It allows managing automatically faults in microservice instances;
• Observability: It provides through metrics, logs, and distributed traces a better understanding of

service behavior.

4.1.1 Technology architecture

The Service Mesh for its operation takes advantage of the logical separation that exists between the “Data
plane”, namely where the traffic takes place between services and the “Control plane” where all logic and
policies are saved. In practice, the Service Mesh creates a proxy for each instance or microservices, these
proxies within Kubernetes are called “sidecars”. The sidecar duty is to intercept all calls towards the
microservice by applying the policies defined by the engine deployed in the Control plane of the system.

The Istio Architecture is shown in Figure 35.

Figure 35 - Istio Architecture

In particular:

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 36

• Proxy: it is based on Envoy open source proxy developed in C++ ;

• Mixer: Enforces access control and usage policies across the service mesh, and collects telemetry
data from the Envoy proxy and other services;

• Pilot: Provides service discovery for the Envoy sidecars, traffic management capabilities for
intelligent routing (e.g. canary rollouts), and resiliency (e.g. retries, circuit breakers);

• Citadel: Enables strong service-to-service and end-user authentication with built-in identity and
credential management;

• Galley: It is Istio’s configuration validation, ingestion, processing and distribution component.

4.1.2 Service distribution and configuration

The Istio API Gateway relies on Kubernetes for scaling, high availability and persistence.

All configuration is stored directly in Kubernetes; there is no database. The Istio API Gateway is packaged as

a single POD called “istio-ingressgateway” as well as other Istio components (Mixer, Pilot,Citadel and

Galley).

By default, the API Gateway is deployed as a Kubernetes deployment and can be scaled and managed like

any other Kubernetes deployment.

4.2 Logging

4.2.1 Service overview

In a microservices-based environment, it is crucial to have a robust and high-performance solution that can
track, retrieve and analyze all the logs in a simplified way. The INFINITECH components are compliant with
the twelve factor 3 advice, so the EFK (ElasticsearchFluentdKibana) stack could be a good choice as a
centralized logging solution.

4.2.2 Technology architecture

Elasticsearch is a real-time, distributed, and scalable search engine that allows for full-text and structured
search. It is commonly used to index and search through large volumes of log data.

Elasticsearch is commonly deployed alongside Kibana, a powerful data visualization frontend and dashboard
for Elasticsearch. Kibana allows you to explore your Elasticsearch log data through a web interface and build
dashboards.

In Kubernetes, containerized applications that log to stdout and stderr have their log streams captured and
redirected to JSON files on the nodes. The Fluentd is a popular open-source Data Collector that tails,
transforms, and ships these log files to the Elasticsearch backend.

The EFK stack is shown in Figure 36.

3 https://12factor.net/

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 36

Figure 36 - EFK Stack

Regarding the format of log lines, the specification should be:

• within a single service, the service must use the same format for all log lines. This is required for
parsing the text into fields to be fed into Elasticsearch;

• all log lines must contain at least: timestamp, log level and message;
• the timestamp is in a ISO8601-like format, e.g. "2019-05-15 21:49:01.814";
• services may add more fields to the log line (e.g. the name of the internal class/component) if

required.

For example, a typical log line for application looks like:

2019-05-15 21:49:01.527 INFO 1 --- [https-jsse-nio-8443-exec-4]

o.s.web.servlet.DispatcherServlet : FrameworkServlet 'dispatcherServlet':

initialization started

Where the first field is the timestamp, followed by the log level, the process id, the thread name, the logger
name and finally the log message.

4.2.3 Service distribution and configuration

The deploy the EFK stack rely on the statefulSet Kubernetes functionality in combination with Headless
Service for each Elasticsearch node. With the statefulSet the name of the pod is not random, instead each
pod gets an ordinal name. This, combined with the Headless Service, allows pods to have stable identification.
In addition, pods are created one at a time instead of all at once, which can help when bootstrapping a
stateful system.

For Fluentd DaemonSet Kubernetes must be used to ensure that all nodes run a copy of a Pod. As soon as

nodes are added to the cluster, fluentd pods are added to them. As nodes are removed from the cluster,

those Pods are deleted. Kibana instead, is deployed as simple Pod through Kubernetes deployment.

D6.12 – Sandboxes for FinTech/InsuranceTech Innovators - III

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 36

5 Conclusions
Observability is one of the key aspects for keeping distributed systems healthy and guaranteeing the
availability of the services that run within our environment, in the specific case, the sandboxes hosted in the
Nova infrastructure. It allows users to deduct performance characteristics from the internal components that
belong to the system, detect bottlenecks, issues, and take mitigation and fix actions fasts.

From the report, several aspects related to the software runtime environment can be analyzed, as well as
some anomalies in the processes that support the software development. For example, if some build step
takes too long to complete, it could be a symptom of bad practice or an issue in the CI/CD automation.

The data we have collected reveal that pilot and tech proxies have been able to run their software without
inconveniences or restrictions imposed by the system, which is yet another demonstration of the possibility
to tailor dedicated INFINITECH Sandboxes in an on-premise environment, such as Nova’s testbed, without
any hassle.

INFINITECH’s Nova testbed runs a constellation of software providing an observable environment for
microservice-based and cloud-native architecture, adopting cloud computing best practices and appropriate
runtime isolation mechanisms, making it a good reference example for easily reproducing such a complex
system on other infrastructures so that they can be ready to be used, in line with the INFINITECH reference
architecture and compliant with the “INFINITECH way” principles.

