
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D8.3 – BigData and AI Solutions

Marketplace - I

Revision Number 3.0

Task Reference T8.2

Lead Beneficiary UPRC

Responsible Dimosthenis Kyriazis, Vasilis Koukos

Partners ABILAB, AGROM, ATOS, BPFI, ENG, FBK, GFT, JSI, NBG, PRIVE, RB,
UPRC

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2021-09-30

Delivered Date 2021-10-11

Internal Reviewers LXS, UNP

Quality Assurance INNOV

Acceptance Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no 856632

Ref. Ares(2021)6186914 - 11/10/2021

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 25

Contributing Partners
Partner Acronym Role1 Author(s)2

UPRC Lead Beneficiary Vasilis Koukos, Filipos Kabouris, George
Galanos

INNOV Contributor John Soldatos, Eftychia Vorila, Ariana
Polyviou

UNP Contributor Tiago Teixeira, Bruno Almeida

Revision History
Version Date Partner(s) Description

0.1 2021-07-05 UPRC ToC Version

0.2 2021-09-17 UPRC Information on the implementation of the
backend of the market platform

0.3 2021-09-24 URPC, UNP Additional details on the interfaces

0.4 2021-09-27 UPRC, INNOV Addition of validation scenarios

1.0 2021-09-30 UPRC Version for internal review

2.0 2021-10-05 UPRC Version for QA review

3.0 2021-10-11 UPRC Final version for submission

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2 Can be left void

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 25

Executive Summary
This document provides an overview of the INFINITECH marketplace, which is considered one of the most
significant artefacts developed in the INFINITECH project. The multi-sided marketplace enables the utilization
of Big Data and AI technologies, serving as a single end-point for the available assets found in the marketplace
and includes algorithms, datasets, frameworks, webinars and lectures, docker containers and combined
solutions, scalable and adaptable to fit into the business needs of companies and organizations, especially of
the Fintech and InsuranceTech subsectors.

The assets accommodated in the marketplace have been offered by various INFINITECH members,
developers and data scientists and can be leveraged internally, increasing collaboration and knowledge
transfer among INFINITECH, or externally by developers, service providers, tech companies and organization,
all while promoting the results of the Project and the impact made to the Finance and the Insurance sectors.

As more detailed presentation of the marketplace’s specifications and architecture have been provided in
past deliverables this document provides a brief overview of the marketplace’s specifications and
architecture and focuses on the accommodated assets, the developed REST API endpoints descriptions and
relevant validation scenarios regarding the functionalities of the back-end.

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 25

Table of Contents
1 Introduction ... 6

1.1 Objective of the Deliverable .. 6

1.2 Insights from other Tasks and Deliverables... 6

1.3 Structure .. 7

2 The INFINITECH Marketplace .. 8

2.1 Marketplace Overview .. 8

2.2 Architecture and main components .. 9

2.2.1 Back-end .. 9

2.2.2 Front-end ... 10

3 Marketplace Technical Overview .. 12

3.1 Baseline technologies .. 12

3.2 Interfaces (APIs) ... 12

3.2.1 APIs related to Users ... 12

3.2.2 APIs related to Descriptions .. 15

3.2.3 APIs related to Assets .. 20

4 Validation scenarios .. 23

4.1.1 Authentication Scenario .. 23

4.1.2 Upload Description Scenario ... 23

4.1.3 Upload Asset Scenario ... 24

5 Conclusions .. 25

List of Figures
Figure 1 - Market platform's layers and main functionalities. .. 9
Figure 2 - Snapshot of the INFINITECH Marketplace Home web page ... 11

List of Tables
Table 1 – APIs of the back-end related to Users. .. 12
Table 2 – APIs of the back-end related to Descriptions. ... 15
Table 3 – APIs of the back-end related to Assets. ... 20

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 25

Abbreviations/Acronyms
Abbreviation Definition

AI Artificial Intelligence

API Application Programming Interface

CRUD Create Retrieve Update Delete - Basic Operations in DBMS

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

ML Machine Learning

REST Representational State Transfer software architectural style

UI User Interface

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 25

1 Introduction
INFINITECH provides a complete integrated environment enabling the utilization of big data and AI
techniques in the finance and insurance sectors. The latter has become feasible through a set of technologies
that enable exploitation of various datasets (obtained from different sources), optimized data management
for these datasets (e.g., across diverse data stores), analytics with innovative algorithms covering a wide set
of scenarios in the finance and insurance sectors, as well as use of tailored sandboxes on the underlying
infrastructure layer for the execution of the aforementioned algorithms. Additionally, the development
progress of INFINITECH pilots and provided sandboxes and testbeds have increased the INFINITECH
ecosystem’s resources, ranging from ML models and AI algorithms, to IoT applications, Blockchain and a
variety of ready-to-use solutions,

The INFINITECH solution goes beyond the utilization of analytics on specific datasets for a number of pilots /
use cases, by aiming at a generalized approach that will facilitate the exploitation of various analytics
algorithms (provided both by INFINITECH researchers / partners and by 3rd party data analysts) on top of
different datasets. To this end, the analytics algorithms need to be made available, to be described in terms
of functionality, parameters and offerings, to be accompanied with datasets that can be used by interested
parties in order to validate their applicability and performance and to be offered as ready-to-be-executed
solutions (e.g., containerized) in order to increase their utilization.

All of the above are representative functionalities of the INFINITECH market platform, which is at an
operational stage (accessible at https://marketplace.infinitech-h2020.eu/) with various updates and
functionalities introduced after the initial version. The marketplace holds and offers the solutions for realizing
big data and AI techniques in the finance and insurance sectors.

Based on the above, the INFINITECH’s multi-sided market platform aims at being one of the project’s main
ambassadors to the big data and AI communities. It is a single, public and hybrid system with many different
APIs, covering all the different required perspectives of the platform. The various APIs developed related to
users, descriptions and assets are described in this document.

The market platform offers big data and AI solutions, as well as IoT and Blockchain solutions, and VDIH
Services. Thus, the INFINITECH market platform is a four-perspective, unified environment being able to store
several types of assets (e.g., algorithms, descriptions of algorithms, evaluation and validation results,
datasets, experimentation outcomes, etc.) in any format.

1.1 Objective of the Deliverable
The main objective of this deliverable is to provide details on the implementation of the market platform of
INFINITECH, following its design as described in deliverable D8.2 - Market Platform and VDIH Specifications.
To this end, it provides an initial summary overview of the already deployed INFINITECH marketplace, it’s
architecture, functionalities and asset accommodation features potentials, while introducing a more detailed
view and guidelines on the implementation and utilization of various APIs developed for various users, assets
and their respective necessary descriptions.

1.2 Insights from other Tasks and Deliverables
This document is closely connected to deliverable D8.2 Market Platform and VDIH Specifications - II, which is
in turn an updated version of D8.1, both focusing more on the specifications and detailed presentation of the
marketplace’s layers, consumers and offerings presentation. Thus, this document provides a brief overview
of the marketplace’s specifications and architecture, focusing on the accommodated assets, developed REST
API endpoints and relevant validation scenarios regarding the functionalities of the back-end.

https://marketplace.infinitech-h2020.eu/

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 25

It should be noted that D8.3 (current deliverable) and D8.6 (IoT and Blockchain Solutions Marketplace) are
complementing each other since the marketplace has been realized as one solution offering both big data
and AI solutions (main target of D8.3) as well as IoT and blockchain solutions (main target of D8.6).

1.3 Structure
The remainder of this deliverable is structured as follows. Section 2 describes an overview of the marketplace
architecture, detailing the main features of its core components that are also described in the deliverable
D8.2 “Market Platform and VDIH Specifications - II”. Section 3 describes the baseline technologies of the
marketplace, as well as the interfaces that have been implemented in the back-end component of the market
platform. Section 4 presents some validation scenarios about the usage of back-end and finally, the report
concludes with a reference to the presented material in Section 5.

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 25

2 The INFINITECH Marketplace
The INFINITECH multi-sided market platform offers BigData, IoT, Blockchain and VDIH solutions is a public
web-based environment with various APIs, able to store several types of assets that may derive/result from
the separate procedures and mechanisms that are either implemented in the scope of the project or not (e.g.
third-party contributions through hackathons/webinars etc.).

2.1 Marketplace Overview
The INFINITECH marketplace is already deployed and available at https://marketplace.infinitech-h2020.eu/.
It is currently populated with various assets and offerings which include:

▪ Algorithms
▪ Datasets
▪ Frameworks & mechanisms
▪ Scientific studies / tutorials
▪ Videos / webinars / lectures
▪ Experimentation results

▪ VDIH services
▪ End-to-end solutions
▪ Docker containers
▪ Combined solutions

The assets above have been provided by an extended audience, which includes INFINITECH Project members,
developers, data scientists, VDIH services providers, as well as other authorized third-party users. The
available offerings could be leveraged by a variety of end-users, with increased potential and emphasis being
given to FinTech and InsuranceTech subsectors.

With the progress of INFINITECH Project and included pilots’ development, new scalable and adaptable
assets are introduced on a regular basis and are made available to the end-users, which can then be deployed
and executed based on their needs. Moreover, in conjunction with WP9 tasks and related activities,
additional external stakeholders, organizations and service providers are also encouraged to accommodate
their assets in the INFINITEH marketplace.

https://marketplace.infinitech-h2020.eu/

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 25

2.2 Architecture and main components
The marketplace platform provides several functionalities that are mapped to different layers. In more detail,
the back-end includes three layers (i.e. Assets Storage Layer, Assets Management Layer, and Interaction
Layer), while the front-end includes one layer (i.e. Presentation Layer). The four layers of the marketplace
along the primary functionalities are depicted in the figure below:

Figure 1 - Market platform's layers and main functionalities.

• The Assets Storage Layer (part of the back-end) is the layer in which the platform’s offered assets are

stored.

• The Assets Management Layer (part of the back-end) delivers all the needed principles and

techniques for the management of the Marketplace’s assets.

• The Interaction Layer (part of the back-end) supports the communication between the market

platform and its users (i.e. human users, and machine users), by providing discrete APIs for exploiting

each different type of asset.

• The Presentation Layer (part of the front-end) provides the User Interface towards the different types

of users that are willing to use the platform.

The market platform is structured around two core components, the back-end and the front-end. This
approach contributes towards the platform’s enhancements in terms of functionality as well as provides
additional information and capabilities.In that direction, the end-users are able to interact with the market
platform through the front-end (through the presentation layer) that utilizes a user-friendly UI, while other
additional services (e.g. from 3rd parties) can be implemented directly with the back-end (through the
interaction layer).

The back-end, which contains structured information and the assets offered by the market platform, is
considered the core of the marketplace and its functionalities. The front-end component is a user-friendly UI
which presents to the users the offered content (the assets and their information), allowing them to interact
with the platform in an easy and effectiveway.This section provides a short overview of the core components
of the marketplace, describing some of their key features. It is noted that a more detailed description of the
INFINITECH platform specifications and architecture has been provided in deliverable D8.2 -Market Platform
and VDIH Specifications II.

2.2.1 Back-end

The back-end is the main component of the marketplace. It consists of three different layers and implements
the main functionalities for the assets management. The three levels are briefly described below.

The Assets Storage Layer is responsible for storing the assets that will be offered by the market platform. An
essential component of this layer is the database that can store files in any format as well as additional
information about the files provided. In this context, the type of database that is used is a document-oriented

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 25

NoSQL database, which stores both JSON-like documents (the format of the descriptions files that are
analyzed in the Assets Management Layer) and binary files, using extended specifications (e.g. file system).

The Assets Management Layer is responsible for the entire life cycle of the assets within the platform and
offers all the principles and techniques for their management. Specifically, this layers handles the assets from
the moment they are added to the platform through the APIs and then stored in the database (Assets Storage
Layer), until they are to be deleted for any purpose from the platform. Through this layer, the market
platform supports the CRUD operations and searching functionality, which are triggered by the
corresponding APIs of the back-end (Assets Interaction Layer). The back-end is a REST API and receives
different HTTP requests in order to perform an operation/ trigger a functionality. Moreover, there are
mandatory description files for all available assets that contain metadata about the described asset (in JSON
format). These description files are mandatory in order to make the assets searchable and retrievable by the
end-users of the marketpalce.

The last layer, the Assets Interaction Layer, is responsible for supporting the communication between the
market platform and its end-users. It implements the interfaces (APIs) of the back-end (analyzed in section
3.2) that will handle the back-end’s operations. As described before, these APIs receive HTTP requests that
trigger the CRUD operations for both assets and description files.

2.2.2 Front-end

The front-end is the fourth layer of the market platform. It is a web-based server that presents the offered
assets to the users, with a friendly UI. The front-end converts all interfaces of the back-end (REST API) into
user friendly interfaces and provides automated forms and processes that make it easier for users to interact
with the back-end and benefit from its stored assets. Therefore, it acts as an intermediate among the
marketplace users and the back-end, sending the respective HTTP requests to the latter and presents its
responses.

In short, the front-end allows users to register and log-in to the marketplace (user-based platform), upload
their offered assets by filling out appropriate forms whose fields will be the content of the description files
of the assets (as mentioned in Section 2.1.1); search for assets according to various fields (title, asset's type,
fields of use, provider, other metadata, etc.) that can be further filtered or even sorted by the number of
views or the date they were uploaded to the marketplace, etc. Also, there is a page that presents in detail
the information of the assets, and through this page, the users are able to retrieve the real assets, the files.

More details about the front-end and its supported functionalities are described in the deliverable D8.5,
entitled “IoT and Blockchain Solutions Marketplace - I”.

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 25

Figure 2 - Snapshot of the INFINITECH Marketplace Home web page

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 25

3 Marketplace Technical Overview
The following sub-sections are describing the baseline technologies that the INFINITECH marketplace exploits
in order to implement its capabilities and its functionalities, and also enlists the core interfaces (APIs) of the
back-end component.

3.1 Baseline technologies
The back-end is the core base of the market platform and it has been developed using a variety of
technologies/tools. First of all, its components are containerized in Docker images that, among others, offer
more efficient management and maintenance, enabling continuous updates and integration. Python is used
as the programming language that along with the Flask framework, which is a Web Server Gateway Interface
(WSGI) developed in Python, implements RESTful APIs to handle the respective HTTP requests.

The offered assets are stored in a MongoDB No-SQL database that is used in combination with GridFS
specification for storing and retrieving large files/objects, of any format. Moreover, Gunicorn, a Python WSGI
HTTP Server for UNIX, is utilized with NGINX, an open-source high-performance HTTP web server and reverse
proxy, since Flask is not optimum for production mode, and thus, both tools will extend the Flask framework
in order to enable access to multiple users at the same time.

In terms of the front-end, it has been implemented using various web technologies (HTML, CSS, etc.) and it
is functional using PHP and JavaScript technologies. It also exploits WordPress and various plugins of it, in
order to manage the content that is presented.

3.2 Interfaces (APIs)
This section describes the REST API endpoints that are introduced in the first version of the back-end. These
APIs are categorized into 3 main groups, namely: APIs related to Users, APIs related to Descriptions and APIs
related to Assets.

3.2.1 APIs related to Users

This group of APIs offers functionalities intended for the management of marketplace users. The most
important functionality is that of user registration, as it is necessary for the usage of the rest functionalities.
For all users, except for their personal information, there will be a unique username. The table below
presents the endpoints related to Users, as they are in the first version of the marketplace.

Table 1 – APIs of the back-end related to Users.

Action HTTP Method Endpoint

Register a new user (Sign in) POST {HOST}/accounts/users/registration

Check username availability GET {HOST}/accounts/username_availability

Authenticate a user (Login) POST {HOST}/accounts/users/authentication

Get user’s information GET {HOST}/accounts/users/information

Update user’s information PUT {HOST}/accounts/users/information

Change user’s password POST {HOST}/accounts/users/change_password

Reset user’s password POST {HOST}/accounts/users/password_reset

Delete user’s account DELETE {HOST}/accounts/users/delete_account

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 25

{HOST} refers to the hosting domain name and the port that the back-end runs.

Most of these actions require additional fields in the headers or even in the body of the HTTP request.
Example of a required field is the API key.

A more detailed description of all the actions in the table is presented below:

• Register a new user (Sign in) - {HOST}/accounts/users/registration

From this endpoint the registrations of the marketplace users are made. A POST request should be made and
the next JSON schema must be in its body as raw data.

{

 "username": "…",

 "first_name": "…",

 "last_name": "",

 "email": "…",

 "password": "…"

}

The following is an example of the request in cURL:

curl --request POST '{HOST}/accounts/users/registration' \

--header 'Content-Type: application/json' \

--data-raw '{

 "username": "…",

 "first_name": "…",

 "last_name": "",

 "email": "…",

 "password": "…"

}'

• Check username availability - {HOST}/accounts/username_availability

This endpoint is used in order to check the availability of a username during the users’ registration. A GET
request should be made and the key “username” must be included in the headers of the request.

The following is an example of the request in cURL:

curl --request GET '{HOST}/accounts/username_availability' \

--header 'username: <value>'

• Authenticate a user (Login) - {HOST}/accounts/users/authentication

Through this endpoint, the users are authenticated in order to log in to their account. A POST request should
be made and the next JSON schema, containing users’ credentials, must be in its body as raw data. It is noted
that users can log in either with their email or with their username. Finally, single sign-on (SSO) schemes are
supported (only through the front-end) for registration and login, using accounts from social media (i.e.
Google, LinkedIn, Github).

{ "username": "…", "email": "…", "password": "…" }

The following is an example of the request in cURL:

curl --request POST '{HOST}/accounts/users/authentication' \

--header 'Content-Type: application/json' \

--data-raw '{ "username": "…", "email": "…", "password": "…" }'

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 25

• Get user’s information - {HOST}/accounts/users/information

This endpoint is used in order to retrieve information about a user. Some of the information that is retrieved,
are first and last name, about section, email, etc. A GET request should be made and the key “username”
must be included in the headers of the request. Also, this endpoint is restricted and thus, users’ API keys
must be included too in the headers of the request.

The following is an example of the request in cURL:

curl --request GET '{HOST}/accounts/users/information' \

--header 'username: <value>' --header 'API_KEY: <value>'

• Update user’s information - {HOST}/accounts/users/information

This endpoint handles requests for updating users’ information. A PUT request should be made and the next
JSON schema, containing users’ information, must be in its body as raw data. Also, this endpoint is restricted
and thus, users’ API keys must be included in the headers of the request.

{ "first_name": "…", "last_name": "…", "about": "…", "email": "…", … }

The following is an example of the request in cURL:

curl --request PUT '{HOST}/accounts/users/information' \

--header 'API_KEY: <value>' --header 'Content-Type: application/json' \

--data-raw '{ "first_name": "…", "last_name": "…", "about": "…", "email": "…", … }'

• Change user’s password - {HOST}/accounts/users/change_password

This endpoint is used when the users want to change their account password. A POST request should be
made and the next JSON schema, containing users’ new and old credentials, must be in its body as raw data.
Also, this endpoint is restricted and thus, users’ API keys must be included in the headers of the request.

{ "username ": "…", "old_password": "…", "new_password": "…" }

The following is an example of the request in cURL:

curl --request POST '{HOST}/accounts/users/change_password' \

--header 'API_KEY: <value>' --header 'Content-Type: application/json' \

--data-raw '{ "username ": "…", "old_password": "…", "new_password": "…" }'

• Reset user’s password - {HOST}/accounts/users/password_reset

This endpoint handles the process of changing users’ passwords after a password reset request. It works in
combination with the front-end’s features which, at first, sends an email to the users with a password reset
link that redirects to a form from which the users can set their new password. After this process, the front-
end sends a POST request to the back-end with the new credentials of the user (username and password).

{ "username ": "…", "password": "…", "password_reset_code": "…" }

The following is an example of the request in cURL:

curl --request POST '{HOST}/accounts/users/change_password' \

--header 'API_KEY: <value>' --header 'Content-Type: application/json' \

--data-raw '{ "username ": "…", "password": "…", "password_reset_code": "…" }'

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 25

• Delete user’s account - {HOST}/accounts/users/delete_account

In order to delete an account, this endpoint should be used, making a DELETE request and providing users’
credentials in its body, as raw data (JSON format). As in the previous endpoints, the endpoint is restricted
and thus, users’ API keys must be included in the headers of the request.

{ "username ": "…", "password": "…" }

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/accounts/users/delete_account' \

--header 'API_KEY: <value>' --header 'Content-Type: application/json' \

--data-raw '{ "username ": "…", "password": "…" }'

3.2.2 APIs related to Descriptions

This group of APIs offers functionalities intended for the management of the descriptions. They support all
CRUD operations and search functionality. Special emphasis was placed on the APIs for the descriptions’
retrieval, extending them so as to get the latest descriptions or even random descriptions either from a
specific collection (database collection) or from all collections at once, using a keyword named “all”. The
collections of the database, as described in deliberable D8.2 “Market Platform and VDIH Specifications - II”,
vary as well as the offered marketplace’s types of assets. The current list of the collections can be found at
the end of the following Table 2, which presents the endpoints related to Descriptions as they are in the first
version of the marketplace.

Table 2 – APIs of the back-end related to Descriptions.

Action HTTP Method Endpoint

Get a list with all descriptions GET {HOST}/descriptions/all

Get a list with all descriptions from a
specific collection

GET {HOST}/descriptions/{collection}

Get a specific description (using keyword
“all”)

GET {HOST}/descriptions/all/{description_id}

Get a specific description (using
“collection”)

GET {HOST}/descriptions/{collection}/{description_id}

Get latest descriptions from all collections GET {HOST}/descriptions/all/latest

Get latest descriptions from a specific
collection

GET {HOST}/descriptions/{collection}/latest

Get random descriptions from all
collections

GET {HOST}/descriptions/all/random

Get random descriptions from a specific
collection

GET {HOST}/descriptions/{collection}/random

Upload / Create a new description with
random ID

POST {HOST}/descriptions/{collection}

Upload / Create a new description with
given ID

POST {HOST}/descriptions/{collection}/{given_id}

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 25

Update a specific description (using
keyword “all”)

PUT {HOST}/descriptions/all/{description_id}

Update a specific description (using
“collection”)

PUT {HOST}/descriptions/{collection}/{description_id}

Delete a specific description (using
keyword “all”)

DELETE {HOST}/descriptions/all/{description_id}

Delete a specific description (using
“collection”)

DELETE {HOST}/descriptions/{collection}/{description_id}

Delete all descriptions DELETE {HOST}/descriptions/all/all

Delete all descriptions from specific
collection

DELETE {HOST}/descriptions/{collection}/all

{HOST} refers to the hosting domain name and the port that the back-end runs.

As a {collection} can be one of the following values derived from the current types of offered assets:

{"algorithms", "notebooks", "ml_models", "datasets", "api", "webinars",

"workshops", "courses ", "vdih_services", "containers", "uncategorized", "other"}

Some of these actions require additional fields in the headers of the HTTP request. Example of a required
field is the API key.

• Get a list with all descriptions - {HOST}/descriptions/all

A GET request to this endpoint will result in the retrieval of the stored descriptions from all collections. It
uses the keyword “all” instead of a collection and that makes the system retrieve descriptions from all
collections at once.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/all'

• Get a list with all descriptions from a specific collection - {HOST}/descriptions/{collection}

This GET request is similar to the above request. The only difference between these two actions is that this
request retrieves descriptions from a single – specific collections (instead of using keyword “all”). The values
for the collection can be found below the Table 2.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/{collection}'

• Get a specific description (using keyword “all”) - {HOST}/descriptions/all/{description_id}

With this GET request, it is possible to retrieve a single description. The retrieval of a specific description is
done using its unique identification code (ID) that is known when uploading it. Also, the retrieval of a specific
description can be done both using keyword “all” and using the name of the collection that the description
has been stored. This is feasible because the back-end ensures that the IDs are unique regardless of in which
collection a description has been stored.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/all/{description_id}'

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 25

• Get a specific description (using “collection”) - {HOST}/descriptions/{collection}/{description_id}

This GET request is similar to the above request, with the difference that it uses a specific collection for the
retrieval of the description (instead of using keyword “all”). The values for the collection can be found below
the Table 2.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/{collection}/{description_id}'

• Get latest descriptions from all collections - {HOST}/descriptions/all/latest

This request is used to retrieve the most recent uploaded descriptions sorted based on the date that they
have been uploaded, with the most recent being on the top of the list. This is a GET request, using the
keyword “all” and has as result the twenty latest descriptions form all descriptions.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/all/latest'

• Get latest descriptions from a specific collection - {HOST}/descriptions/{collection}/latest

This request is similar to the above GET request. It uses the value of a specific collections and not the keyword
“all” and this results to return sorted the most recent descriptions of a specific collection. The values for the
collection can be found below the Table 2.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/{collection}/latest'

• Get random descriptions from all collections - {HOST}/descriptions/all/random

This endpoint returns a number of random descriptions from all collections (uses keyword “all”). It is useful
in order to suggest and promote different descriptions each time. It is also used in the home page of the
INFINITECH market platform, where random descriptions are displayed.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/all/random'

• Get random descriptions from a specific collection - {HOST}/descriptions/{collection}/random

This endpoint is similar to the above endpoint. Instead of keyword “all” it uses a specific collection and thus
it returns a number of random descriptions of the provided specific collection. The values for the collection
can be found below the Table 2.

The following is an example of the request in cURL:

curl --request GET '{HOST}/descriptions/{collection}/random'

• Upload / Create a new description with random ID - {HOST}/descriptions/{collection}

Through this POST request, the users can upload their descriptions. It requires to specify (at the end of the
endpoint) the collection in which the description will be stored (the values for the collection can be found
below the Table 2). Also, in the headers of the request, the API key of the provider is necessary to be included.

In the body of the request should be placed the contents of the description, as raw data in JSON format. The
schema of the descriptions’ content varies, and it is flexible to be extended. The following JSON schema
presents some required fields of a description.

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 25

{

 "owner ": "<organization / author / etc.>", "contact": "<provider’s name and email>",

 "description ": "<description of the provided asset>", "name": "<name/title of the asset>",

 "type": "<type of the asset (same as collection values)>",

 "simpleComposite": "<simple (single file) / composite (set of files e.g. compressed file)>",

 "availability": "<reflects the users who can see the description: public / infinitech / specific

 Work Packages or Pilots / Other>",

 "fieldOfUse": ["<field 1>", …], "comments": "<provider’s comments>"

}

Except of these fields, there are also some optional fields, like “subtype”, “deliveryDate”, “link” and others.

The following is an example of the request in cURL:

curl --request POST '{HOST}/descriptions/{collection}' \

--header 'API_KEY: <value>' --header 'Content-Type: application/json' \

--data-raw '{

 "owner ": "<organization / author / etc.>", "contact": "<provider’s name and email>",

 "description ": "<description of the provided asset>", "name": "<name/title of the asset>",

 "type": "<type of the asset (same as collection values)>",

 "simpleComposite": "<simple (single file) / composite (set of files e.g. compressed file)>",

 "availability": "<reflects the users who can see the description: public / infinitech / specific

 Work Packages or Pilots / Other>",

 "fieldOfUse": ["<field 1>", …], "comments": "<provider’s comments>"

}'

• Upload / Create a new description with given ID - {HOST}/descriptions/{collection}/{given_id}

This endpoint is similar to the above POST request. The difference is that at the end of the endpoint there is
a given ID for the new description. This endpoint is only available to administrators. The values for the
collection can be found below the Table 2.

The following is an example of the request in cURL:

curl --request POST '{HOST}/descriptions/{collection}/{given_id}' \

--header 'API_KEY: <value>' --header 'Content-Type: application/json' \

--data-raw '{

 "owner": "<organization / author / etc.>", "contact": "<provider’s name and email>",

 "description": "<description of the provided asset>", "name": "<name/title of the asset>",

 "type": "<type of the asset (same as collection values)>",

 "simpleComposite": "<simple (single file) / composite (set of files e.g. compressed file)>",

 "availability": "<reflects the users who can see the description: public / infinitech / specific

 Work Packages or Pilots / Other>",

 "fieldOfUse": ["<field 1>", …], "comments": "<provider’s comments>"

}'

• Update a specific description (using keyword “all”) - {HOST}/descriptions/all/{description_id}

With this endpoint, the providers and the administrators, are able to update the content of the (/their)
descriptions. It is possible to update the whole description or only some fields. It requires the ID of the
description to be at the end of the endpoint and the users’ API key in the headers of the PUT request. As in
the create action, the description should be provided as raw data in JSON format. Note that this endpoint
uses the keyword “all”.

The following is an example of the request in cURL:

curl --request PUT '{HOST}/descriptions/all/{description_id}' \

--header 'API_KEY: <value>' --header 'Content-Type: application/json' \

--data-raw '{

 "existing_or_new_field": "<value>", …

}'

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 25

• Update a specific description (using “collection”) - {HOST}/descriptions/{collection}/{description_id}

This PUT request is similar to the previous request. The only difference is that instead of using keyword “all”
it uses a specific collection. The values for the collection can be found below the Table 2.

The following is an example of the request in cURL:

curl --request PUT '{HOST}/descriptions/{collection}/{description_id}' \

--header 'API_KEY: <value>' --header 'Content-Type: application/json' \

--data-raw '{

 "existing_or_new_field": "<value>", …

}'

• Delete a specific description (using keyword “all”) - {HOST}/descriptions/all/{description_id}

A DELETE request to this endpoint has as a result the deletion of a specific description, using its ID. This
endpoint is restricted and thus, users’ API keys must be included in the headers of the request. Note that a
description can be deleted only by its provider and the administrators.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/descriptions/all/{description_id}' --header 'API_KEY: <value>'

• Delete a specific description (using “collection”) - {HOST}/descriptions/{collection}/{description_id}

This DELETE request is similar to the above request, with the difference that it uses a specific collection
(instead of keyword “all”). The values for the collection can be found below the Table 2.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/descriptions/{collection}/{description_id}' \

--header 'API_KEY: <value>'

• Delete all descriptions - {HOST}/descriptions/all/all

Through this DELETE request, the administrators (and only them) can delete all descriptions and from all
collections (keyword “all”). It is a restricted endpoint and thus, users’ API keys must be included in the
headers of the request.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/descriptions/all/all' \

--header 'API_KEY: <value>'

• Delete all descriptions from specific collection - {HOST}/descriptions/{collection}/all

This DELETE request is similar to the above request, and it is only available to administrators. With this
request it is possible to delete all descriptions from a specific collection. It is a restricted endpoint and thus,
users’ API keys must be included in the headers of the request. The values for the collection can be found
below the Table 2.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/descriptions/{collection}/all' \

--header 'API_KEY: <value>'

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 25

Search functionality

The search functionality is a vital requirement for the most services in order to reduce the number of objects
returned by a query. Thus, relative query filters can be added to the endpoints of the back-end that retrieve
multiple descriptions simultaneously. These filters enable the users of the marketplace to search for assets,
based on various parameters from the content of the stored descriptions. Currently, the search functionality
supports only equality queries and relevant equality queries (i.e. if contains a value).

In order to make a query, at the end of the endpoint should be used the following syntaxes:

Single attribute: '{HOST}/descriptions/all?<attribute_name>=<value>'

More attributes: '{HOST}/descriptions/all?<attribute_1>=<value>&<attribute_2>=<value>&…'

For attribute in lower hierarchical level:

 '{HOST}/descriptions/all?<attribute_level1>.<attribute_level2>.<…>=<value>'

The following search example request in cURL, returns the descriptions that in their title contain the value
“machine learning” and their type is “algorithms”:

curl --request GET '{HOST}/descriptions/all?title=machine%20learning&type=algorithm'

The search functionality is available in all GET requests except for the request of getting a specific description.

3.2.3 APIs related to Assets

This group of APIs offers functionalities intended for the management of the assets. They support all CRUD
operations for files which are stored in the GridFS specification of MongoDB database. Table 3 presents the
endpoints related to Assets as they are in the first version of the marketplace.

Table 3 – APIs of the back-end related to Assets.

Action HTTP Method Endpoint

Get a list with the stored assets GET {HOST}/assets

Get a specific asset, using its ID GET {HOST}/assets/{asset_id}

Upload a new asset with random ID,
linked to specific description

POST {HOST}/assets/{description_id}

Upload a new asset with given ID, linked
to specific description

POST {HOST}/assets/{description_id}/{given_asset_id}

Update a specific asset, using its ID PUT {HOST}/assets/{asset_id}

Delete a specific asset, using its ID DELETE {HOST}/assets/{asset_id}

Delete all assets DELETE {HOST}/assets/all

{HOST} refers to the hosting domain name and the port that the back-end runs.

{description_id} refers to the ID of the description with which the new asset will be linked to.

Most of these actions require additional fields in the headers of the HTTP request. Example of a required
field is the API key.

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 25

• Get a list with the stored assets - {HOST}/assets

A GET request to this endpoint will result in the retrieval of a list with the stored assets and some additional
information of them.

The following is an example of the request in cURL:

curl --request GET '{HOST}/assets'

• Get a specific asset, using its ID - {HOST}/assets/{asset_id}

This GET endpoint is used to retrieve a specific stored asset. For its retrieval, the usage of the asset’s ID is
necessary. Also, this endpoint is restricted and thus, users’ API keys must be included in the headers of the
request.

The following is an example of the request in cURL:

curl --request GET '{HOST}/assets/{asset_id}' --header 'API_KEY: <value>'

• Upload a new asset with random ID - {HOST}/assets/{description_id}

Through this POST endpoint, the users can upload their assets. It requires to add (at the end of the endpoint)
the id of the description with which is going to be linked. It is also necessary to add to the headers of the
request a) the API key of the provider and b) the asset’s filename. The assets have to be uploaded as form-
data with the key “asset”.

The following is an example of the request in cURL:

curl --request POST '{HOST}/assets/{description_id}' \

--header 'API_KEY: <value>' --header 'filename: <value>' \

--form 'file=@"<full_path_to_asset>"'

• Upload a new asset with given ID - {HOST}/assets/{description_id}/{given_asset_id}

This POST request is similar to the previous endpoint. The difference is that with the current endpoint it is
possible to specify the ID of the new asset, providing it at the end of the endpoint {given_asset_id}. Currently,
this endpoint can be used only by the administrators of the market platform.

The following is an example of the request in cURL:

curl --request POST '{HOST}/assets/{description_id}/{given_asset_id}' \

--header 'API_KEY: <value>' --header 'filename: <value>' \

--form 'file=@"<full_path_to_asset>"'

• Update a specific asset, using its ID - {HOST}/assets/{asset_id}

With this PUT request, it is possible to update an already stored asset. The asset’s ID which is at the end of
the endpoint, determines which asset should be replaced by the provided asset. As in the uploading, the
asset should be uploaded as form-data with the key “asset” and the headers of the request have to contain
provider’s API key. Note that the users can only update the assets provided by themselves (except for
administrators).

The following is an example of the request in cURL:

curl --request PUT '{HOST}/assets/{asset_id}' \

--header 'API_KEY: <value>' \

--form 'file=@"<full_path_to_asset>"'

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 25

• Delete a specific asset, using its ID - {HOST}/assets/{asset_id}

A DELETE request to this endpoint has as a result the deletion of a specific asset, using its ID in order to find
it. This endpoint is restricted and thus, users’ API keys must be included in the headers of the request. Note
that an asset can be deleted only by its provider and the administrators.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/assets/{asset_id}' --header 'API_KEY: <value>'

• Delete all assets - {HOST}/assets/all

This DELETE request is similar to the above request, with the difference that it deletes all assets, as it uses
the keyword “all”. Again, it is necessary the usage of the users’ API keys and it is only available to
administrators.

The following is an example of the request in cURL:

curl --request DELETE '{HOST}/assets/all' --header 'API_KEY: <value>'

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 25

4 Validation scenarios
This section presents some validation scenarios regarding the functionalities of the back-end component of
the marketplace in combination with the endpoints described in the previous sections.

Specifically, the scenarios that will be presented are how users can be authenticated to the back-end, how
they can upload a new description and how they can upload an asset for the description they created in the
second scenario.

It is noted that all scenarios will be done exclusively using the back-end. Similar scenarios, but using the front-
end, will be presented in deliverable D8.5 "IoT and Blockchain Solutions Marketplace - I".

4.1.1 Authentication Scenario

We consider a registered user in the INFINITECH Marketplace with username "test_user" and password
"test_password". The user, as described in section 3.2.1, in order to be authenticated, needs to send a POST
HTTP request to the endpoint “{HOST}/accounts/users/authentication”. In the body of the request, the user
should add its credentials in the following format:

{ "username": "test_user", "password": "test_password" }

Thus, according to the description of the endpoint, the user should send the following request (using cURL):

curl --request POST '{HOST}/accounts/users/authentication' \

--header 'Content-Type: application/json' \

--data-raw '{ "username": " test_user", "password": " test_password" }'

The response of this request, if everything is fine (e.g. correct credentials), will be a temporary code that acts
as an API key. Through this API key, the user is able to use the rest functionalities of the marketplace.

4.1.2 Upload Description Scenario

In this scenario, we will use the user of the previous scenario and we consider that the user followed the
above scenario in order to be authenticated to the marketplace (i.e. has an API key).

The same user wants to upload a new asset / solution to the Marketplace. In this case, the first step that
need to do, is to upload / create a new description to the marketplace.

All descriptions have a specific schema and should be filled in accordingly. Using the front-end this is done
automatically through the corresponding forms, but in case the request is made in the back-end, the
description must be created by the user.

As described in section 3.2.2, the user must add this description in JSON format as raw data to the body of
the request. We suppose that the user wants to upload the description for the already uploaded description
for the Python Notebook “DeepVaR” (https://marketplace.infinitech-h2020.eu/infi_assets/deepvar-value-
at-risk-prediction-leveraging-deep-learning). The user - provider prepares the corresponding description as
follows:

{

 "owner ": "INNOV-ACTS LTD", "contact": "…", "type": "Notebook", "simpleComposite": "simple",

 "description ": "This component both explains and implements the DeepVaR, which is a Value-at-

 Risk model based on deep neural networks and Monte Carlo simulations.",

 "name": "DeepVaR: Value-at-Risk prediction leveraging Deep Learning",

 "availability": "INFINITECH", "fieldOfUse": ["Finance","Risk Management"], "comments": null

}

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 25

In order to upload this description to the marketplace, the user should send a POST request to the endpoint
“{HOST}/descriptions/{collection}” where the {collection} will be the value “notebooks”. Also, the user should
include the API key that got as a response during the authentication (previous scenario).

The following is an example of the corresponding request in cURL:

curl --request POST '{HOST}/descriptions/notebooks' \

--header 'API_KEY: <value>' --header 'Content-Type: application/json' \

--data-raw '{

 "owner ": "INNOV-ACTS LTD", "contact": "…", "type": "Notebook", "simpleComposite": "simple",

 "description ": "This component both explains and implements the DeepVaR, which is a Value-at-

 Risk model based on deep neural networks and Monte Carlo simulations.",

 "name": "DeepVaR: Value-at-Risk prediction leveraging Deep Learning",

 "availability": "INFINITECH", "fieldOfUse": ["Finance","Risk Management"], "comments": null

}'

The response of this request will be the ID of the new description. This ID will be used in the next scenario,
in order to upload the description’s asset.

4.1.3 Upload Asset Scenario

This scenario extends the previous scenarios. It uses the API key of the user that has been authenticated as
per the first scenario, and it uses the ID of the description that uploaded in the second scenario. In this
scenario, the same user wants to upload the asset for the description of DeepVaR Notebook.

The user has a compressed file (.zip) to upload which need to be linked with a specific description.

Thus, as described in section 3.2.3, the user should send a POST request to the next endpoint
“{HOST}/assets/{description_id}” where the “description_id” is the ID that got as a response in the second
scenario, during the uploading of the description to which the asset will be linked. Moreover, the user should
add to the headers of the request a) the API key from the first scenario and b) the asset’s filename (e.g.
deepvar.zip).

The following is an example of the scenario’s request in cURL:

curl --request POST '{HOST}/assets/{description_id}' \

--header 'API_KEY: <value>' --header 'filename: deepvar.zip' \

--form 'file=@"./deepvar.zip"'

The response of the request is the new asset’s ID and the result, except for the storing of the asset, is the
connection between the asset and the description.

D8.3 – BigData and AI Solutions Marketplace - I

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 25

5 Conclusions
The marketplace is considered the main driver for assets utilization among members of the INFINITECH
ecosystem, as well as the main artefact for exploitation and sustainability of the project. As the specifications
and detailed architecture of the INFINITECH marketplace have been provided in past deliverables, and in
specific D8.1 and D8.2, this document provides a brief overview of the marketplace’s specifications and
architecture, thus giving focus to the accommodated assets, developed REST API endpoints descriptions and
exploitation potentials.

The marketplace offers ready-to-use solutions covering a wide range of modern business and technical
needs, focusing, as most pilots of INFINITECH project, on the Finance and Insurance sectors. Of course, most
assets are related to Big Data and AI techniques and algorithms, with a variety of datasets, experimentation
results and models being already available at the marketplace. Other than ready-to-use algorithms,
frameworks and combined solutions, some assets offer state-of-the-art IoT and Blockchain solutions.

Additionally, the INFINITECH marketplace aspires to become a prominent multi-sided market platform and
VDIH and continue adding value to practitioners, organizations and communities of the Finance and
Insurance sector long after the INFINITECH Project has been completed.

Finally, this document and the progress presented within, is well aligned with the project’s goals and overall
strategy, awaiting additional assets to be populated with the pilot’s development progress while achieving
related objectives and KPIs as describes in the tables below.

